A Low Cost All-Band All-Mode Radio for Public Safety Applications
S.M. Shajedul Hasan, Philip Balister, S.W. Ellingson, J.H. Reed

Interoperability Problem
Current State of Public Safety Radio
- Incompatible equipment
- Lack of interoperable standards
- Disparate, stove-piped & proprietary systems
- Rigid allocation of band & mode

Barriers
- Time required to develop standards
- Maturity of technology
- Regulatory issues (FCC)
- Cost/Time required to replace equipment

Goal
- Standards-based systems
- Ability to dynamically accommodate new standards
- Flexible & automatic allocation of band & mode

Intermediate Step
- Replacement of existing user terminals with a low cost all-band / all-mode radio
- Technology already exists to solve the hardware design problem
- Smooth transition to goal architecture with backward compatibility
- Possibly simplified regulatory acceptance
- Immediate relief for first responders, not requiring dramatic changes to systems or operations

Project Summary
- Develop and demonstrate a single radio which can operate in all bands and using all modes of relevant to public safety applications
- Aggressive cost reduction
- Validation though laboratory testing and field demonstration
- Open & free dissemination of results at each phase
- 3 year plan (Oct 05 – Sep 08)

Implementation Issues
- “Functional” View of this Radio
 - At least 13 bands relevant to Public Safety x Many channels per band = A lot of radios!

Approach - 1
Digital IF Processing: Altera Development Board (Altera Stratix FPGA)
General Purpose Processing: Analog Device’s Blackfin board with BF537 Processor
Software: C on uClinux

Approach - 2
Digital IF Processing: Ettus Research USRP (Altera Cyclone II FPGA)
General Purpose Processing: Texas Instruments OMAP
Software: SCA-Compliant Embedded

These two parallel approaches are mainly for assessing the advantages and disadvantages of SCA based software design in public safety SDR.

All the updates and technical reports are available at:
www.ece.vt.edu/swe/chamrad