Detection & Localization of L-Band Satellites using an Antenna Array

S.W. Ellingson
Virginia Tech
ellingson@vt.edu

G.A. Hampson
Ohio State / ESL

June 2004

http://www.ece.vt.edu/~swe/argus
Introduction

• Traditional radio astronomy uses large, filled-aperture antennas to achieve high sensitivity and spatial resolution.

• The resulting field of view (FOV) is extremely narrow, which limits sensitivity to undiscovered transient astronomical sources.

• An alternative approach is to use instead large numbers of low gain (broadbeam) elements to achieve sensitivity over the entire sky.

• Our system “Argus” is a first step in that direction. The system has been continuously operational since Spring 2003.

• Here, we present some work in validating system performance using observations of earth-orbiting satellites.

http://www.ece.vt.edu/~swe/argus
Antenna Array

- 34 antenna units in array (currently in a pseudo-random configuration); 24 are operational
- Element is planar spiral on FR4 with tiered ground plane
- $A_e \sim 60 \text{ cm}^2$ per antenna @ 1420 MHz, zenith
- Integrated LNA powered through RF cable
- $T_{sys} \sim 215 \text{ K}$ per element
- Total useable range about 900-1700 MHz

http://www.ece.vt.edu/~swe/argus
Array geometry.
Approximately random so as to mitigate aliasing as much as possible.
Dots represent phase centers of elements employed in this experiment.

http://www.ece.vt.edu/~swe/argus
Receivers / Data Aggregation

Direct Conversion Receivers (DCRs)

- Moves 14 MHz spectrum from L-band to baseband (I/Q)
- Digitizes 20 MSPS, 8-bit “I” + 8b “Q”
- Output at 320 Mb/s using serial LVDS

Argus Narrowband Processor (ANP)

- Corrects (small) I/Q imbalance from DCRs
- “Tune and Zoom” within 14 MHz digital passband: 60 kHz BW @ 78.125 kSPS
- Continuously aggregates 32 elements in a single data stream; further processing by a PC cluster

http://www.ece.vt.edu/~swe/argus
Adaptive Beamforming Example

- 1691 MHz (WEFAX) emission from geostationary satellite GOES-EAST
- Relatively weak signal (normally requires 1-m dish and good LNA)

![Signal from single element](http://www.ece.vt.edu/~swe/argus)

![Signal after beamforming with 24 elements, using adaptively estimated weights](http://www.ece.vt.edu/~swe/argus)
Predicted result for GOES-12 (1691.0 MHz), obtained from simulation. Note strong alias plus complex sidelobe structure.

How to interpret image: u (horizontal axis) and v (vertical axis) are "direction cosines": $u=v=0$ is the zenith, and $u^2+v^2=1$ is the horizon.

http://www.ece.vt.edu/~swe/argus
Actual measured result at 1691.0 MHz, 30 kHz bandwidth, before calibration.

http://www.ece.vt.edu/~swe/argus
Actual measured result at 1691.0 MHz, 30 kHz bandwidth, calibrated using near-field noise source.

http://www.ece.vt.edu/~swe/argus
Actual measured result at 1691.0 MHz, 30 kHz bandwidth, calibrated.

This is a contour plot derived from the GOES-12 measured image, with contours at 0.99, 0.95, 0.90, and 0.10 times the brightest pixel. Small misalignment is probably due to error in measuring array geometry.

http://www.ece.vt.edu/~swe/argus
Actual measured result at 1691.3 MHz, 30 kHz bandwidth, calibrated.

By observing the adjacent 30 kHz channel, which is nominally signal-free, we confirm that the system is fairly well calibrated (indicated by the relatively flat image) and that all structure seen in the previous image is due to GOES-12.

http://www.ece.vt.edu/~swe/argus
Detection by Eigenanalysis

- A 24 x 24 “spatial covariance matrix” R, tabulating the cross-correlations between all possible pairs of elements, is formed from a single 209-ms data record.

- Assuming perfect calibration, the absence of a signal means all of the eigenvalues of R are equal.

- Thus, detection can be defined as a condition in which the inequality of eigenvalues exceeds some threshold.

- The number of eigenvalues exceeding this threshold indicates the number of uncorrelated far-field sources detected.
 - At 1691.00 MHz, we should detect 1 signal (GOES-12 WEFAX)
 - At 1691.30 MHz, we should detect 0 signals (Cold sky)
 - At 1575.42 MHz, we should detect ~9 signals (GPS constellation)
Observed eigenvalue spectra, 209 ms integration

Observed signal to noise ratios are consistent with anticipated 215 K / element system temp.

http://www.ece.vt.edu/~swe/argus
Concluding Remarks

- Argus system functions and sensitivity have been validated using observations of earth-orbiting satellites
 - Sensitivity ~ (2.4 x 10^{-22} W m^{-2} Hz^{-1}) in 209 ms

- Should be noted that same detection performance can be achieved without calibration! (Only the difference relative to a “noise-only” spatial covariance is important.)

- Work continues on implementing a campaign to detect & localize astronomical transients
 - Present limitation is (ironically) interference from terrestrial- and space-based transmitters

- Same technology has many other applications
 - Interference surveillance and characterization
 - Radio astronomy
 - Spectrum management / regulatory activity
 - Passive multistatic radar
 - Military / National security
 - Civilian aviation

http://www.ece.vt.edu/~swe/argus