# Examination of a simple pulse blanking technique for RFI mitigation

#### N. Niamsuwan, J.T. Johnson

The Ohio State University

# S.W. Ellingson

Virginia Tech

RFI2004 Workshop, Penticton, BC, Canada Jul 16, 2004





# Motivation

**I** Radio astronomy observations are complicated by RFI

⊠ Traditional instruments are <u>not designed</u> to cope with this problem.

 $\boxtimes$  E.g. Output data already integrated to <u>low temporal rate</u>. Rapid pulsed-interference can not be extracted and suppressed in post-observation process

➢ Can make data recording faster; however, amount of data recorded can be <u>excessive</u>.

Real-time RFI mitigation is <u>desirable</u>: remove RFI while keeping manageable output data rate

Adaptive mitigation algorithm desirable for operation in varying RFI environment.







**Interference Suppressing Microwave Radiometer** 

Asynchronous Pulse Blanking (APB) Algorithm

**Assessing APB Performance** 

Section 2017 Instrument data set

Simulations and Results





#### Interference Suppressing Microwave Radiometer



# APB Algorithm







# APB Algorithm



- Large  $\beta^2$  reduce the sensitivity of detection.
- Some pulses may be *missed*.
- Some interference still remains.



- Small  $\beta^2$  tends to trigger the **noise peak**.
- Some desired data is blanked.







- Experiments at <u>OSU</u> and the <u>Arecibo</u> observatory with digital radiometer have qualitatively shown *success* of APB in removing pulses.

[Ellingson, S. W., and G. A. Hampson, *RFI and Asynchronous Pulse Blanking in the 1230-1375~MHz Band at Arecibo*, The Ohio State University ElectroScience Laboratory Technical Report 743467-3, Feb 2003a.]

[Hampson, G. A., J. T. Johnson, and S. W. Ellingson, *Design and demonstration of an interference suppressing microwave radiometer*, IEEE Aerospace Conference 2004, conf. proc., 2004]

- Detailed study of <u>parameter choice</u> was <u>not</u> performed; preferable to study in software
- Performance assessing in the <u>range of RFI</u> has <u>not</u> been studied.
- To address these issues, a <u>simulation</u> study has been done using data from LISA instrument



#### L-Band Interference Surveyor/Analyzer (LISA):

#### A sensor developed to observe RFI environment.

Deployed in the "Wakasa Bay" remote sensing campaign (Jan-Feb 2003) flights in US, across pacific and Wakasa bay (Japan)







#### LISA – Block diagram



#### LISA's Navigation Path: Jan 3, 2003



- Red line represents the navigation path of campaign (VA to CA)
- X-mark shows *known* ARSR station.
- LISA measured 16K captures: 819.2 us sampled every 50 ns.
- For each <u>sweep</u>, **5**16K-samples were sucessively captured wihin 5 seconds
- Capture in same channel is repeated every 15 mins: 145 captures total per channel





#### Simulations and Results

#### Software study of APB using LISA data set

- 1. Choosing  $\beta^2$  and  $N_{blank}$
- 2. Output  $\chi^2$  Test
- 3. Effect of blanking on integrated spectra





# Choosing $\beta^2$



- **Run** APB process with given threshold (e.g.  $\beta^2 = 40$ )
- **Estimate** amount of samples that can be declared as a pulses.



- The estimated % *steeply increase* as threshold smaller than ' $\beta^2 = 40$ ' level indicating trigger noise peak  $40 < \beta^2 < 90$ 



# Choosing N<sub>blank</sub>



- With fixed threshold ( $\beta^2 = 90$ ),  $N_{\text{blank}}$  is *varied* for each simulation.
- Reference threshold ( $\beta^2 = 30$ ), used for estimating any pulses left.



#### **Output** $\chi^2$ **Test -** How Gaussian is the output ?



- Five 16K-samples successively captured are tested by  $\chi^2$ -Test compared to gaussian distribution



 $-\chi^2$  are reduced after blanking (the distribution data tends to become <u>gaussian</u>)



#### **Effect of Blanking -** Does APB change the desired result?



Split 16K-sample (819.2 µs) into 32 frames of 512-sample

Group them as BLANK, PARTIAL BLANK and NO BLANK "frames"

*FFT* each 512-sample; <u>compute</u> <u>spectrum</u> of each frame





#### Effect of Blanking - Does APB change the desired result?

#### **Coping with PARTIAL BLANK frames**



#### Effect of Blanking - Does APB change the desired result?

#### **Spectral Average**



Freq. Spectrum of the desired result (NO\_BLANK), final OUTPUT (NO\_BLANK+PARTIAL BLANK) compared to the INPUT

The <u>error</u> introduced by PARTIAL\_BLANK spectrum is relatively <u>small</u>





APB parameter ranges examined: algorithm seems to be *fairly robust*, while remaining simple enough to implement in hardware

The process can <u>improve</u> the data containing interference and appears to <u>perform well</u> in varying environments

Effect on averaged spectra appears small once power is scaled appropriately.



