Ten Years of RFI –
Project Phoenix at Parkes,
Green Bank and Arecibo

Michael M. Davis, Peter R. Backus
and Jill Tarter
SETI Institute
CHARACTERISTICS OF THE SEARCH SYSTEM

• Near real-time signal processing
• Immediate follow-up two-site observation of “candidate ETI” signals

• Spectrometer (since 2002):
 – 56 MHz bandwidth, 0.7 Hz Resolution
 – 84.8 million Channels per polarization
 – Successive spectra overlapped 50%
Signal Detection

• Both Pulsed and Continuous Signals
• Frequency drift of up to \pm one channel per spectrum

• Follow-up Detection:
 – Candidate ETI signals tested after one data acquisition period (~5 min)
 – If necessary, telescope moved off-source to verify
Some Parts of the Spectrum were Unusable

PERSISTENT SPECTRUM BLOCKAGE

<table>
<thead>
<tr>
<th>Observatory</th>
<th>L-Band (1200-1750)</th>
<th>S-Band (1750-3000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkes 64 m</td>
<td>100 MHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>NRAO 140 Foot</td>
<td>130 MHz</td>
<td>50 MHz</td>
</tr>
<tr>
<td>Arecibo 305 m</td>
<td>170 MHz</td>
<td>424 MHz*</td>
</tr>
</tbody>
</table>

At Arecibo, some interference at S-Band was so strong that filters were used to block 360 MHz to prevent overloading the receiver. Another 26 MHz is blocked by Digital Audio Satellite broadcasting.
The Rest of the Spectrum was Observed at High Resolution

Time–Frequency Plot of Pioneer 10

\[\text{Frequency} \times \text{Time} \]

\[\text{0 dm} \]

\[\text{right 1 Hz} \]

\[\text{mean pwr = 0.049062} \]

\[\leftrightarrow \text{------------ 0.7 kHz ------------} \]
Observing Procedure

• Begin Each Observing Run by ‘Priming’ the RFI Database
 – All-night scans through planned observing band while pointing at zenith
 – Identify RF and IF birdies, as well as other persistent narrow bandwidth signals

• Compare signals detected during Star observations with database, which is constantly updated with new RFI signals
The RFI Database

- Contains ALL detected signals
 - Date and Time
 - Power, Frequency, Width, Drift Rate
 - Classification Code, much more
- Formed basis of resolving almost all candidates
 - Any signal seen within the past week in another direction deemed to be RFI
 - Typically <5% of spectrum ‘blocked’ in this way, except in ‘Persistent RFI’ bands
A Tale of Two Frequency Bands

- 1400 – 1427 MHz
 - RAS Primary, ‘No Transmissions’
- 1600 – 1627 MHz
 - RAS Primary Shared, 1610.6 – 1613.8
 - Satellites (GLONASS, IRIDIUM)
 - Aeronautical Radionavigation
- Data taken at Arecibo in two observing runs in spring and fall of 2003
Presentation Format

- First four slides are from database ‘priming’ observations (RFI Scans), followed by a dozen slides of ‘signals’ from star-tracking observations. There are separate slides for each of the two bands.

- Each plot shows one characteristic on vertical axis, for each numbered signal on horizontal axis
 - Frequency (F), power (P), drift rate (D), width (W)
 - Signals are sorted differently in different plots, to bring out correlations
 - Example: F/F => Frequency Displayed, Signals sorted by Frequency
RFI Scan, 1400–1427 F/F

Arecibo RFI Scans 2003
1400 - 1427 MHz

About 160 hits, mostly noise
RFI Scan, 1600-1627 F/F

Areceibo RFI Scans, 2003
1600 - 1627 MHz

20 times as many signals as 1400-1427
RFI Scan, 1400-1427 F/P

Arecibo RFI Scans 2003
1400 - 1427 MHz

Mostly Noise Hits at first power level above threshold
RFI Scan, 1600-1627 F/P

Arecibo RFI Scans, 2003
1600 - 1627 MHz

Persistent, strong RFI
Signals, 1600-1627 F/F

Arecibo Signals 2003
1600 - 1627 MHz

1602-1610 Added to Blocked Regions based on RFI Scans

Still have nearly 6,000 signals

16-18 July 2004
RFI2004 Workshop, DRAO Penticton BC
Signals, 1400-1427 P/P
Areceibo Signals 2003
1400 - 1427 MHz

A few strong birdies saturate

Full Range Usable, half as many signals as 1600-1627
Signals, 1600-1627 F/P

Arecibo Signals 2003

1600 - 1627 MHz

<table>
<thead>
<tr>
<th>Signal Number</th>
<th>Frequency [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1595</td>
</tr>
<tr>
<td>1000</td>
<td>1600</td>
</tr>
<tr>
<td>2000</td>
<td>1605</td>
</tr>
<tr>
<td>3000</td>
<td>1610</td>
</tr>
<tr>
<td>4000</td>
<td>1615</td>
</tr>
<tr>
<td>5000</td>
<td>1620</td>
</tr>
<tr>
<td>6000</td>
<td>1625</td>
</tr>
</tbody>
</table>

16-18 July 2004

RFI2004 Workshop, DRAO Penticton BC
Signals, 1400-1427 W/P

Wider Signals Provide more Power
Signals, 1400-1427 D/P

Arecibo Signals 2003
1400 - 1427 MHz

Non-Drifting Birdies are the most powerful signals
Signals, 1600-1627 D/P

Arecibo Signals 2003
1600 - 1627 MHz

Satellites in Low Earth Orbit Decelerate Strongly
Signals, 1600-1627 W/F

Arecibo Signals 2003
1600 - 1627 MHz

Signal Number, Sorted by Frequency

16-18 July 2004
RFI2004 Workshop, DRAO Penticton BC
Signals, 1600-1627 P/F
Arecibo Signals 2003
1600 - 1627 MHz

Power [arb. units]

Signal Number, Sorted by Frequency
Signals, 1600-1627 F/W

Arecibo Signals 2003
1600 - 1627 MHz

Most Detected Signals have Minimum Width
Signals, 1600-1627 P/W

Arecibo Signals 2003
1600 - 1627 MHz

Signal Number, Sorted by Width

Power [arb. units]
Signals, 1600-1627 D/D

Arecibo Signals 2003
1600 - 1627 MHz

Drift Rate [Hz/sec]

Signal Number, Sorted by Drift Rate
Signals, 1600-1627 P/D

Arecibo Signals 2003
1600 - 1627 MHz

Signal Number, Sorted by Drift Rate

Power [arb. units]
Signals, 1600-1627 P/P

Arecibo Signals 2003
1600 - 1627 MHz

Power [arb. units]

Signal Number

0 1000 2000 3000 4000 5000 6000

0 100 200 300 400 500 600 700 800 900