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Abstract—We investigate the performance of Internet-of-

Things (IoT) networks under passive attacks from eavesdroppers

capable of monitoring individual links. An IoT network with

multiple sensor classes is studied where every sensor class has a

local access point (LAP) which are connected to one or more small

cell base-station access points (SAP) which in turn are connected

to a central cloud access point (CAP). The CAP interfaces the

IoT network to the Cloud Radio Access Network which serves

the users who request sensor readings. We propose a unique

attack resilient IoT sensor reporting model based on IoT traffic

characteristics and study the performance of this system under

strict latency and secrecy constraints.

Index Terms—IoT, Latency, Uplink, Eavesdropper, Secrecy.

I. INTRODUCTION

The proliferation of heterogeneous wireless network archi-

tectures as well as a multitude of radio access techniques

have paved the way for a fully connected Internet-of-Things

(IoT) paradigm. IoT is envisioned to create a bridge between

machine-type communications and wireless data networks [1],

[2]. IoT networks consist of a very large number of low power

devices which report sensor readings over the network. For

example, users are able to connect to their home devices

over wireless networks to monitor their current states. While

modern wireless networks are mostly limited by the ability to

handle large volumes of multimedia data, such data generally

does not have very strict latency constraints. IoT networks on

the other hand, generally handle a large number of single digit

sensor readings which have very strict latency constraints es-

pecially over multiple hops. Thus a latency centric analysis of

IoT networks is in order. Furthermore, IoT networks generally

have asymmetric traffic being mostly uplink heavy with mostly

control signaling in the downlink.

Since the nature of data communication over the IoT

networks is potentially of a confidential nature, the security

of such data is an important design aspect in IoT networks.

Recent works in [3], [4] have studied secrecy in downlink

cache-enabled networks. Conversely in this work, we present

a latency-centric study of secrecy in uplink IoT networks.

We develop an attack resilient system framework for sensor

data reporting on the IoT uplink. Under passive attacks from

an eavesdropper capable of intercepting transmissions on the

uplink, we provide countermeasures to such attacks and study

the cost of security in terms of latency and backhaul rate.

II. IOT NETWORK MODEL

We consider an IoT network where users, requesting data

from different sensor classes, from one edge of the network
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and the sensor classes form the opposite edge. The network

model is illustrated in Figure 1. Under this setting, we consider

uplink data communication from the sensors to the users under

secrecy constraints. We outline a system model resilient to

passive attacks from an eavesdropper in the sequel.

A. Network Connectivity

We consider a set of N local access points (LAP)

L1,L2, . . . ,LN . An IoT sensor class is a cluster of IoT

sensors served by one LAP. Each LAP is connected to one

or more small cell access points (SAP). We assume that the

IoT network has a total of S SAPs denoted by S1,S2, . . . ,SS .

In the following discussion, the terms IoT class and LAP are

used interchangeably.

The connectivity between the LAPs and the SAPs is defined

by a bipartite graph G = (S1:S ,L1:N , E), where the edge

(Ss,Ln) ∈ E for s ∈ 1, . . . , S and n ∈ 1, . . . , N . We further

define a probabilistic coverage model, where probabilities γs,n
denote the probability of the SAP Ss being connected to the

n−th IoT class LAP Ln. We observe that
N
∑

n=1

γs,n = 1, ∀s ∈ {1, 2, . . . , S}, (1)

i.e., the probability distribution is over the set of N sensor

classes. Furthermore, note that the connection probabilities

also account for physical layer characteristics of the network

including fading, shadowing and relative location (separation)

of SAPs and LAPs1. The set of SAPs are connected to a central

cloud access point (CAP) through finite capacity backhaul

links. The CAP is considered to be a cellular base station (e.g.,

eNodeB in LTE) which forms the gateway for the IoT sensor

network to connect to a cloud radio access network (C-RAN).

The users wanting access to the IoT sensor readings requisition

their demands through the C-RAN to the CAP. Thus, it is

imperative that the CAP is able to serve the users with their

requested information with minimal latency. To this end, we

next define the end-to-end communication policy on the uplink

between the IoT LAPs and the CAP.

B. Uplink Data Transmission Policy

In this work we concentrate on the IoT uplink model

from the LAP to the CAP. IoT networks generally consist

of machine-type nodes which report sensor readings to users.

Thus, the traffic is usually uplink-heavy with mostly control

signaling on the downlink. It is further envisioned that the

latency of transmission is the limiting factor in these networks

rather than the volume of data traffic since most sensor

readings have finite expiry times.
1The values γs,n can be considered as the probability of a SAP Ss being

connected to a LAP Ln averaged over multiple random realizations of the
connectivity graph G thereby accounting for topology/link changes over time.
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Fig. 1. System Model for Uplink Data Communication in IoT.

In order to incorporate the traffic characteristics of IoT

networks, we assume that user requests from the C-RAN are

served directly from the CAP with data already available in

its buffer. Further, since the CAP is a central node, we assume

it has a large enough buffer size to store reports from all N
IoT classes under its service. Based on this assumption, it

is pertinent to study the uplink data communication between

the LAPs and the CAP under varying latency constraints such

that a fresh set of sensor readings is always available at the

CAP buffer to serve user requests. We next define the sensor

reporting policy for the IoT network. The LAP-CAP uplink

communication policy is defined as π = (πE, πF), where πE

is an encoding policy at the LAPs and πF is a forwarding

policy at the SAPs. The policies are designed to be resilient

to eavesdroppers and the associated protocols are defined next.

1) Encoding Policy πE: The encoding of the sensor data is

performed at each IoT class LAP for transmission to the SAPs

serving them. To this end, we first define a composite sensor

reading namely the sensor report, SRn at the LAP Ln, which

consists of readings from multiple sensors within the n−th IoT

sensor class. The users request these composite reports from

CAP through the C-RAN. Each LAP collects data packets

from its connected sensor nodes and encodes these packets

using a rateless MDS channel code e.g., raptor codes [5].

Assume that each report SRn is encoded into rateless coded

packets such that any r packets suffice to decode the report

at any end user or CAP. Similar to prior work in [2], we also

assume that each report SRn has an expiry time ∆n. ∆n is

defined as the time, from generation of the report, to the time

at which it expires and is not valid for futher use.

2) Forwarding Policy πF: We next consider the action of

the SAPs in the uplink policy. Each SAP, Ss, ∀s ∈ {1, . . . , S},

connects to the LAP Ln, ∀n, with probability γs,n, to retrieve

at most r encoded packets from the LAP. Each SAP then

processes and forwards the encoded packets to the CAP with

a transmit power budget of P . We define the number of

retrieved packets normalized by r as the fraction ms,n ∈ [0, 1].
We define as tn, the time taken by each SAP to process

(retrieve and transmit) a single packet from sensor class

n ∈ {1, . . . , N} and forward to the CAP. In our model, we

allow for different processing times for different classes since,

without loss of generality, each IoT class may use different

radio access protocols, thereby requiring different times for

processing and forwarding. In the case of a homogeneous

network, the times could be same for all classes. As an

example, if an SAP retrieves 5 packets from LAP L1, the delay

in processing is 5t1. The processing time tn is similar to a

buffering time where the SAP collects all the packets and then

transmits them together to the CAP. There is a decodability

constraint at the CAP such that it needs to receive at least r
packets from each sensor report SRn such that it can decode

the messages for servicing user requests. The total processing

time at each SAP is defined as follows:

Tp(s) =

N
∑

n=1

ms,n r tn, ∀s ∈ {1, . . . , S}. (2)

Tp(s) should be such that across all SAPs, the processing

time is cumulatively large enough to process at least rN
packets within the latency constraints. This is required due to

the decodability constraint at the CAP. Furthermore, an upper

limit of Tp(s) can be the time taken to completely process all

required rN packets at each SAP. Thus, we have

r

S

N
∑

n=1

tn ≤ Tp(s) ≤ r
N
∑

n=1

tn, ∀s ∈ {1, . . . , S}. (3)

Subject to restrictions on Tp(s) related to the end-to-end

latency, we seek an answer to the following question: what is

the optimal fraction of packets that each SAP needs to retrieve

from the LAPs? Since multiple SAPs can forward packets from

the same IoT class (LAP) to the CAP, transmission cooperation

at the SAPs is the main design goal. We aim to study such

cooperation under passive attacks from an eavesdropper. To

this end, we first define two different system frameworks

and consequently address them under a threat model with

counteractive secrecy constraints.
III. A LATENCY CENTRIC IOT UPLINK FRAMEWORK

In this section, we present two main IoT frameworks which

aid a latency centric study of the IoT uplink model discussed

in Section II. First, we consider a network model where the

backhaul link is rate-limited (i.e., fixed low-rate backhaul link).

Under this setting, we aim to study the trade-off between

the end-to-end latency of the system vs. the total processing

time, Tp(s), at each SAP. Next, we consider a latency-limited

backhaul link, where we need to meet a fixed latency budget

to maintain data freshness under varying backhaul rate. Under

this setting, we aim to study the trade-off between the back-

haul rate and the processing time Tp(s) under strict latency

constraints. We next develop each framework separately.
A. Rate-Limited Backhaul Network

Consider a rate-limited backhaul link between each SAP

and the CAP with a fixed rate log(P ) bits/sec for ease of

exposition. The latency over these links for transferring data

from the SAPs to the CAP is then proportional to the amount

of data, ms,n, fetched by each SAP from their connected

sensor LAPs. Thus, the end-to-end latency2 for each SAP can

be written as:

L(s) =
N
∑

n=1

r ms,n

(

tn +
1

log(P )

)

. (4)

2Here we have assumed that the SAPs from the N IoT sensor classes at
a fixed latency and the LAP-SAP links are not rate limited. Thus we do
not account for this latency in the formulation choosing instead to adjust the
Tp(s) accordingly to account for it.
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Further, based on the coverage probability, γs,n, of the SAPs,

we can write an expected end-to-end latency for each SAP as:

Lexp(s) =

N
∑

n=1

γs,n r ms,n

(

tn +
1

log(P )

)

. (5)

The expected latency is thereby dependent on the fraction

of retrieved packets and their related processing times at the

SAPs subject to a total processing time constraint at each SAP.

Further, the end-to-end decodability constraint dictates that the

CAP receive at least r packets from each sensor class. Finally,

we define a parallel access protocol highlighting the method

in which the CAP accesses data from the SAPs. In this access

protocol, the SAPs can send their data in parallel to the CAP.

As a result the end-to-end latency of this system is limited by

the maximum latency faced by any of the constituent SAPs.

We next formulate a joint optimization problem to minimize

the end-to-end latency of the parallel access system. This

problem entails the SAPs to jointly fetch content by accounting

for the network topology. Let

M =
[

ms,n,
s∈1,...,S
n∈1,...,N

]

be an S×N data retrieval matrix. Then the minimum system

latency can be expressed as the solution of the following

minimization problem:

minimize
ms,n∈M

[

max
s∈1,2,...,S

N
∑

n=1

γs,n r ms,n

(

tn +
1

log(P )

)

]

(6)

subject to:

S
∑

s=1

ms,n ≥ 1, ∀n ∈ 1, 2, . . . , N, (7)

N
∑

n=1

rtnms,n ≤ Tp(s), ∀s ∈ 1, 2, . . . , S, (8)

Let the solution to the system be Lexp(opt). The minimization

in (6) aims to minimize the worst case end-to-end latency in

the system. The constraints (7)-(8) are explained as follows:

The first constraint (7) follows directly from the decodability

constraint of SRn at the CAP. The second constraint (8) is

based on the per SAP processing time constraint Tp(s). This

is an equivalence of the buffer processing time and enables the

APs to fetch more content based on the allowable processing

time. Finally, the formulation in (6)-(8) assumes that none of

the sensor reports expire within the time taken for transmission

under the constraint (8) i.e., ∆n ≤ mins∈1,...,S Lexp(s). Note

that Tp(s) and transmission power P are system parameters

which can be varied to study the latency performance. In this

formulation we are interested in the Lexp(opt) vs. Tp(s) trade-

off. The optimization problem in (6) is based on minimizing

the maximum of linear S linear terms. Thus, we can equiv-

alently reformulate (6) as an LP by introducing an auxiliary

variable LAux, as follows:

minimize
ms,n∈M

LAux subject to: (9)

N
∑

n=1

γs,n r ms,n

(

tn +
1

log(P )

)

≤ LAux, ∀s (10)

in addition to constraints (7)-(8). The problem in (9) is a linear

program subject to linear constraints and hence can be solved

optimally by use of numeric solvers.

B. Latency-limited Backhaul Network

Consider a latency-limited backhaul network, where the link

between each SAP and the CAP is not rate limited but is

limited by a total latency constraint. In this setting, we consider

a total latency constraint Ttotal such that

Ttotal ≥ Tp(s) + Tb(s), ∀s ∈ 1, . . . , S, (11)

where Tb(s) is the latency on the backhaul link from Sn

to the CAP. Further, we have ∆n ≤ Ttotal i.e., the latency

constraint ensures data freshness at the CAP. Thus, under this

setting, we have a strict latency constraint on the end-to-end

transmission from the LAPs to the CAP. As a result, based

on amount of data downloaded by each SAP, the rate of the

backhaul transmission varies since the link has fixed latency.

The backhaul rate due to each SAP can be expressed as

R(s) =

∑N

n=1
r ms,n

Ttotal − Tp(s)
packets/unit time. (12)

Thus under probabilistic connectivity model, the expected

backhaul rate can be expressed as

Rexp =
S
∑

s=1

∑N

n=1
r γs,n ms,n

Ttotal − Tp(s)
. (13)

Again, an optimization problem similar to (6) can be formu-

lated to minimize the expected backhaul rate:

minimize
ms,n∈M

Rexp (14)

subject to:

S
∑

s=1

ms,n ≥ 1, ∀n ∈ 1, . . . , N, (15)

N
∑

n=1

rtnms,n ≤ Tp(s), ∀s ∈ 1, . . . , S, (16)

Ttotal ≥ Tp(s) + Tb(s), ∀s ∈ 1, . . . , S. (17)

Similar to the previous framework, (14) is a linear program

which can be solved numerically. In this setting, we are

interested in the optimal expected backhaul rate vs. processing

time i.e., Rexp(opt) vs. Tp(s) trade-off. We next look at the

attack models in the IoT network in the presence of an

eavesdropper.

IV. SECRECY IN IOT: ATTACK MODELS

Since the uplink data communication in the IoT networks

consists of sensor reports SRn, ∀n, which potentially con-

tain classified information, network security is an important

paradigm. A main design goal of the proposed system model is

resilience against external attacks. The proposed MDS coding

of sensor reports SRn is a means of adding robustness and

redundancy in the links against passive eavesdroppers and

leads to simpler countermeasures for secrecy. To this end,

we study possible attacks on the IoT uplink and derive the

related secrecy constraints under which the attacker is unable

to decode any sensor report.

A. Passive Eavesdropping on the Backhaul Link

This is an eavesdropper based passive attack scenario and is

illustrated in Figure 1. In this attack model, an eavesdropper,

E, is capable of observing and intercepting transmissions one

or more corrupt SAP to CAP link. The SAP or the CAP are

unaware of which link is intercepted. However, the system
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Fig. 2. Passive attack by an eavesdropper on (a) rate-limited backhaul link and (b) latency-limited backhaul link.

is aware of the number of links which can be attacked in

the worst case. Thus, to achieve secrecy over this potentially

compromised link, the SAP needs to ensure that r packets from

any one sensor are never transmitted over the compromised

links. Let Bc be the set of attacked links. If the eavesdropper

is capable of intercepting transmissions on any k ≤ S links,

then we have the cardinality of the set

|Bc| =

(

S

k

)

backhaul links.

Thus, in order to ensure that the eavesdropper does not decode

any sensor report with a passive attack on links in the set Bc,

we have the following simple secrecy constraint:
∑

ℓ∈Bc

mℓ,n < 1, ∀n ∈ 1, . . . , N. (18)

Note that the constraint (18) takes a simple form due to the

attack-resilient design of the system model. Solving the linear

programs (9) and (14) subject to the additional constraint (18)

entails a latency centric study of the cost of security in the

IoT uplink network.

V. SIMULATION RESULTS

In this section, we provide more insight into the uplink IoT

network transmission under secrecy constraints for a network

with N = 52 IoT classes and S = 5 SAPs. The network

connectivity probabilities γs,n are generated according to a

zipf power law distribution with random exponents between

0.25− 0.5. This was chosen to model distance-based connec-

tivity and a more intricate modeling is left for future work. We

assume that the constraint Tp(s) is equal for each SAP and is

varied between the limits in (3) to study the trade-offs. The

number of packets r is a system parameter and as a result, we

select the r tn to belong to the set {1, 3, 7, 9} time units. Figure

2(a) shows the latency vs. processing time trade-off for the

rate-limited backhaul framework under different attacks from

an eavesdropper. We plot the expected latency normalized by

the number of packets r. It can be seen that for the rate-limited

links, the effect of attacks in terms of end-to-end latency is

minimal i.e., even when 2 out of 5 links is attacked, the cost

in terms of latency is very low. This is owing to the relatively

loose latency constraints in the rate-limited framework.

On the other hand, for the network with total latency

constraint, Ttotal, Figure 2(b) shows the normalized expected

backhaul-rate vs. processing time trade-off. In this case,

we set the minimum allowed backhaul latency Tmin
b =

(

∑N

n=1
r tn

)

/S while the total latency constraint is set

as Ttotal = 2
(

∑N

n=1
r tn + Tmin

b

)

. Note that the chosen

parameters are selected to make a meaningful initial study

of the network and are by no means exhaustive. Under this

strict constraint, we see that attacks on the backhaul links

have a much more pronounced effect. The simple mitigation

techniques make the problem infeasible for higher values of

Tp. This is intuitive since a high Tp implies a very low

Tb thereby increasing the rate. As attacks increase, reliable

transmission cannot be achieved under the Tb budget for the

backhaul links.

VI. CONCLUSIONS AND FUTURE WORK

In this letter, we presented a latency centric study of an IoT

uplink network under passive attack from an eavesdropper. We

showed that under rate-limited backhaul links, the resilience to

attacks on multiple links is good. For latency-limited backhaul

links, the cost of security in terms of rate is relatively high.

Future work in this paradigm will account for more complex

counter measures for passive attacks such that secrecy can

be achieved at a potentially lower cost. Furthermore, active

attacks from IoT classes will be considered where rogue LAPs

can flood the SAP with spurious packets thereby crippling

the network. The study of backhaul rate and latency and the

corresponding cost of secrecy is an open problem.
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