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Abstract—In the United States, the 3500-3650 MHz band is
a potential candidate for spectrum sharing between military
radars and commercial cellular systems. This paper presents a
framework for the analysis of radar performance under cellular
interference. The impact on the performance of radar due
to cellular interference is studied by deriving bounds on the
probability of detection and probability of miss detection. For
this purpose, we first derive the distribution of aggregate cellular
interference, in a correlated shadow fading environment, at the
radar receiver. We prove that the sum of interference signals from
a cellular system has a log-normal distribution with probability
1. We then derive a lower bound on the probability of miss target
where we consider our target to be a ship and target returns are
modeled by a log-normal distribution. Along with the analytical
results we also provide the corresponding simulation results
showing degradation in radar performance due to interference
from cellular systems.

I. INTRODUCTION

Recently, in order to accommodate growing bandwidth

demands, regulators and operators have taken initiative to

explore secondary access to VHF/UHF bands. This has re-

sulted in many policy level decisions by regulators around the

world [1] to accommodate secondary access without harming

the incumbents. In order to further facilitate the growth in

commercial spectrum utilization, the United States government

is exploring ways to share spectrum currently in-use by the

federal agencies. This move is motivated by recent studies

by the National Telecommunications and Information Ad-

ministration (NTIA), along with the Federal Communications

Commission (FCC), which found under utilization of huge

chunks of spectrum reserved for the federal agencies. Spec-

trum sharing promises huge economic and social prospects

but also brings in new challenges for the optimal operation of

incumbents and commercial users, from a harmful interference

perspective. It is required to first understand the challenges

and then propose innovative interference mitigation methods

along with the policy level decisions needed to make spectrum

sharing a reality. This work is a step towards understanding the

challenges posed by sharing radar spectrum with commercial

cellular systems.

In order to analyze the problem we first need an accurate

model for the distribution of aggregate interference. This also

helps in cellular system planning to reduce the harmful effects
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of interference and ensures performance of both the cellular

and radar systems. In determining a model of aggregate

interference, from a cellular system, several factors need to

be considered which includes their spatial distribution, total

number of transmitters, power control, and channel param-

eters. In wireless communications, interference is usually

characterized by sum of log-normal random variables. This is

why the distribution of sum of log-normal random variables

has been an active topic of research since 1960s [2]. Since

then, many people have used approximation techniques to ap-

proximate distribution of log-normal sums. Some of the most

commonly used approximation methods include Wilkinson’s

[3], a moment matching approach for the first two moments,

and Schwartz and Yeh’s exact first two moment expressions

for a sum of two log-normal random variables. In the con-

text of cellular communications, aggregate interference has

been approximated using various approximations and moment

matching techniques, see [4] and references therein. In this

work, we prove that the aggregate cellular interference has a

log-normal distribution with probability 1.

Dynamic frequency selection (DFS) methods have been suc-

cessfully used in the past to share the 5 GHz spectrum between

radars and wireless LANs [5]. However, the topic of spectrum

sharing between radars and cellular systems has received little

attention thus far. Recent efforts include spectral, temporal,

system level, and spatial approaches for interference mitigation

[6], [7], [8]. Others include radar waveform shaping [9],

[10], radar waveform design [11], and resource allocation at

cellular system [12] for radar spectrum sharing. The authors in

[13], propose an exclusion-region and secondary-user-density

based model to share spectrum between an aeronautical radar,

operating in the 960-1215 MHz band, and indoor femto cell

users. The operation of femto cell users is limited by the

interference threshold established by the central network in

order to protect the radar. However, this paper doesn’t address

radar performance for macro cell users and for the case

when the cellular operation is not constrained by any limit

imposed on the level of interference, we seek to explore such

a possibility in this paper. This also serves as a motivation

to explore the tolerable interference limits for radar under

consideration for policy level decisions.

In this paper, we first provide a spectrum sharing model in

Section II. In Sections III and III-A we state and prove that



the aggregate interference from a cellular system has a log-

normal distribution, respectively. In Section III-B, we compute

the interference parameters. In Section IV we explain our radar

system and target model. Section V derives bounds on the

probability of detection. Section VI presents simulation results

along with the discussion and Section VII concludes the paper.

II. SYSTEM MODEL AND NOTATIONS

We consider a model in which a cellular system with N
base stations (BS) is sharing radar spectrum to increase its

capacity. However, this sharing of spectrum results in cellular

interference to radar system. We assume the radar is at a

distance of ri, i = 1, 2, · · · , N , from the ith BS. Our model

is general in nature as we do not consider any specific spatial

distribution of the cellular system. In addition, all the BS

are capable of transmitting at arbitrary power levels of their

interest. The only assumption is that the location of all the BSs

is known to the radar at which we want to characterize the

interference. This is a fair assumption since in macro cellular

systems BS locations are subject to network planning.

The wireless propagation environment that exists between

shipborne radars and BSs of cellular systems is significantly

different than that of a typical mobile in a cellular system.

This is due to the fact that radar is located far away and

only path loss, which is significant over large distances, and

shadow fading, due to blockage of signals from large obstacles,

affect the received signal strength at radar receiver. Due to the

same reason, radar receiver is insensitive to the effect of small

scale fading, due to mulipath propagation. These factors bring

in novelty in the problem of aggregate cellular interference

analysis for radar system and makes it different from analyzing

interference at a particular receiver inside a cellular system.

Thus, in order to consider a realistic interference scenario,

we consider mean path loss and log-normal shadow fading

models, which are commonly used in interference analysis

treatments [14]. Then, the interference power received from

the ith BS is

Ii = Pir
−α
i eXi , i = 1, 2, · · · , N, (1)

where Pi denotes the power transmitted, r−α
i is the path loss

exponent, and eXi is the log-normal random variable, where

Xi is the transmitted signal from the ith BS. We consider

Xi’s that are jointly correlated Gaussian random variables

with mean, μXi , and variance, σ2
Xi

. We consider that the

jointly correlated Gaussian random variables have a specific

correlation structure, as specified in [15],

ρij =
E
[
(Xi − μXi)(Xj − μXj )

]
σXiσXj

= βiβj . (2)

The model under consideration has some other practical

applications. It can be used to characterize interference from a

secondary cellular system to a primary TV system where the

cellular system is opportunistically using the TV white spaces

to enhance its capacity [1]. Another application is the IEEE

802.22 digital TV (DTV) [16] scenario in which a cellular

system is used to broadcast a TV signal and the interest is

 

Fig. 1. Shipborne electrically-steered phased array radar is experiencing
interference from an onshore cellular system while detecting a seaborne target
that is a ship. The radar’s main beam is subject to interference from cellular
system.

in the interference from this system to cognitive radios using

spectrum opportunistically.

III. AGGREGATE INTERFERENCE DISTRIBUTION

In order to evaluate the impact of cellular interference on

radar’s performance it is necessary to characterize the statistic

of the interference. The interference from N BSs, at radar, is

the sum of individual interference powers and can be written

as

I =

N∑
i=1

Ii

=

N∑
i=1

Pir
−α
i eXi . (3)

Then, the distribution of aggregate interference, described by

equation (3), follows the log-normal distribution according to

the following theorem.

Theorem 1. The probability distribution of the normalized ag-
gregate interference, at a radar system, has a limit distribution
which is log-normal with probability 1, i.e.

I =

∑N
i=1 Ii
N

w.p.1−−−→ lnN(μI , σ
2
I )

where the parameters μI and σ2
I are given as

μI =
1

N

N∑
i=1

Pir
−α
i e

(
μXi

+
σ2
Xi
2

)

and
σ2
I = μ2

I

(
eζ

2 − 1
)



where
ζ2 = σXi

σXj
βiβj .

The cumulative probability density function (cdf) is given
as

FI(i;μI , ζ) = P(I ≤ i) = 1−Q

(
ln i− lnμI

ζ
+

ζ

2

)
where Q(·) is the Marcum’s Q-function defined as

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt.

A. Proof of the Aggregate Interference Distribution
Let Yi, i = 0, 1, · · · , N, be independent Gaussian random

variables with mean μYi
and variance σ2

Yi
. The first step is

to create jointly correlated Gaussian random variables Xi, i =
1, · · · , N, with a transformation

Xi = ζY0 + Yi (4)

where ζ is a positive real number and we set μY0
= 0 and

σ2
Y0

= 1. With this transformation μXi
= μYi

and σ2
Xi

=
ζ2 + σ2

Yi
.

In order to proceed with the proof, we first define the

independent log-normal random variables

Zi = Pir
−α
i eYi i = 1, 2, · · · , N (5)

with mean

μZi
= Pir

−α
i eμYi

+σ2
Yi

/2

and variance

σ2
Zi

=
(
Pir

−α
i

)2
e(2μYi

+σ2
Yi
)
(
eσ

2
Yi − 1

)
.

Second, we define jointly correlated log-normal random

variables

Ii = Pir
−α
i eXi i = 1, 2, · · · , N

with mean

μIi = μZi
eζ

2/2 (6)

and variance

σ2
Ii =

(
Pir

−α
i

)2
e(2μYi

+σ2
Yi
)
(
eσ

2
Yi − 1

)
.

Using (3) we can write the normalized aggregate interference

as

I =
1

N

N∑
i=1

Ii

=
1

N

N∑
i=1

Pir
−α
i eXi . (7)

Substituting Xi from equation (4) in (7) we get

I =
1

N

N∑
i=1

Pir
−α
i e(ζY0+Yi)

=
1

N
eζY0

N∑
i=1

Pir
−α
i eYi

= eζY0

∑N
i=1 Zi

N
· (8)

Applying the strong law of large numbers on equation (8)

yields

lim
N→∞

I = eζY0 lim
N→∞

∑N
i=1 Zi

N

= eζY0

∑N
i=1 E[Zi]

N

= eζY0

∑N
i=1 μZi

N
= eζY0 μ̄Zi

= e(ζY0+ln μ̄Zi
) � Ĩ (9)

where Ĩ is a log-normal random variable with mean μĨ and

variance σ2
Ĩ
. Note that equation (9) follows with probability

one if Zi’s are independent, this follows from our definition of

Zi’s in equation (5), and if the series
∑∞

i=0 σ
2
Zi
/i2 converges.

To prove that, let

σ2
max = max

i
σ2
Zi

= max
i

{(
Pir

−α
i

)2
e(2μYi

+σ2
Yi
)
(
eσ

2
Yi − 1

)}
.

Since Pi, r
−α
i , μYi , and σ2

Yi
are all bounded so σ2

max < ∞.

Then
∞∑
i=0

σ2
Zi

i2
≤

∞∑
i=0

σ2
max

i2

= σ2
max

∞∑
i=0

1

i2
= σ2

max

π2

6
< ∞

where the last equality follows from [15].

B. Parameters of the Aggregate Interference Distribution

In this section we find the parameters for the aggregate inter-

ference in terms of our signal parameters, Pi, r
−α
i , μXi , σ

2
Xi

,

as described by equation (3). In the last section we showed that

the aggregate interference has a joint log-normal distribution

with parameters μI and σ2
I which can be calculated from

equation (9) by first noting

μĨ = eζ
2/2μ̄Zi . (10)

Using definition of μ̄Zi we can write

μ̄Zi
=

1

N

N∑
i=1

μZi
= e−ζ2/2 1

N

N∑
i=1

μIi (11)

where (11) follows from (6). Substituting (11) in (10) yields

μĨ =
1

N

N∑
i=1

μIi

=
1

N

N∑
i=1

Pir
−α
i e

(
μXi

+
σ2
Xi
2

)
� μI . (12)

Similarly, the variance of the aggregate interference is given

as

σ2
Ĩ
= E

[(
Ĩ − μĨ

)2]
= μ̄2

Zi
eζ

2
(
eζ

2 − 1
)
. (13)



Now, using equations (10) to (12), we can write (13) in terms

of our interference parameters as

σ2
Ĩ
= μ2

I

(
eζ

2 − 1
)
� σ2

I .

Next, in order to determine ζ2 we proceed using equations

(4) and (7), i.e.,

ρij =
E
[
(Xi − μXi

)(Xj − μXj
)
]

σXiσXj

=
E
[
(ζY0 + Yi − μYi

)(ζY0 + Yj − μYj
)
]

σXi
σXj

=
ζ2

σXi
σXj

= βiβj . (14)

The last equality follows from our assumptions, introduced

at the beginning of this proof, i.e. μY0 = 0, σ2
Y0

= 1,

and Yi, i = 0, 1, · · · , N, being independent Gaussian random

variables. Then ζ2 follows from (14) as

ζ2 = σXiσXjβiβj .

The cdf of aggregate interference follows from the definition

of cdf of log-normal random variables and the definitions of

μI and σ2
I after some algebraic manipulations.

IV. RADAR SYSTEM AND TARGET MODEL

In this paper, we consider a shipborne electronically-steered

phased array radar with four phased arrays, each capable to

carry a 45◦ azimuth scan. The phased array radars are capable

of performing multiple functions at the same time. Some of

the functions include complete search of hemisphere, track

multiple targets; illuminate multiple targets and guide missiles

towards them; they also have flexible search and track rates

and frequency agility.

We consider a seaborne target which is a ship. The detection

of fluctuating target signals, in the presence of Gaussian noise,

is a well studied problem in radar literature [17]. Usually it

is assumed that the amplitude of the fluctuating signal has a

Rayleigh distribution. This assumption is justified since radar

returns from a target are composed of numerous and diverse

reflecting elements. Then, statistically, the sum of these large

number of independent random vectors, each having a uniform

phase and a Rayleigh amplitude distribution, is a Rayleigh

vector [18]. However, the Rayleigh assumption is generally

true for targets having small radar cross section (RCS) because

targets with high RCS exhibit a heavier tail than the Rayleigh

distribution [19].

It is observed that certain target signals are best mod-

eled by a log-normal distribution, for example, targets like

ships, satellites and space vehicles. Assuming a Rayleigh

distributed signal for such targets lead to significant errors in

the probability of detection [20]. Therefore, we use a log-

normal target model, which is constant within a scan but

fluctuates log-normally from scan to scan. Since, the maximum

effect of interference on radar will be during the azimuth

search/track/detect operation and that is where the target is

located it is appropriate to use a log-normal target model. Any

other target model for such a scenario may not give accurate

results due to mismatch in target models. Thus, the reflected

signal from the target ship has a log-normal distribution and

can be expressed as

x = Pre
−ψ

where Pr is the power of the received signal from the target,

ψ is normally distributed with mean μψ and variance σ2
ψ . The

probability of detection for such a target, no-interference case,

is given as [20]

PD(SNR,Γ, np, ψ) =

∫ ∞

0

Pnp(x,Γ)f(x|SNR, ψ) dx (15)

where

Pnp(SNR,Γ) =

∫ ∞

γ

(v|SNR)(np−1)/2e−(v−npSNR)

Inp−1

(
2
√

SNRnpv
)
dv

is the probability of detection for np integrated pulses with

some signal to noise ratio (SNR) at some detector threshold

Γ, IK(·) is the modified Bessel function of order K, and

f(x|SNR, ψ) =
1√

2πσψx
exp

(
− ln2(ψx/SNR)

2σ2
ψ

)
, ψ ≥ 1

is the probability density function for the log-normally fluc-

tuating signal with ψ being the fluctuation parameter and

σ2
ψ = 2 lnψ.
The radar range equation is a useful metric for estimating

the range of a radar, as a function of radar parameters. We

are interested in the maximum radar range, Rmax, that can be

achieved in a cellular interference scenario. The simple form

of the radar equation is given as [21],

R4
max =

Pt,maxGtGrσ̄λ
2

(4π)3Pr,min

(16)

where Pt,max is the peak transmitted power from the transmit

antenna of gain Gt, Gr is the gain of the receive antenna, λ is

the wavelength, σ̄ is the RCS of the target ship, and Pr,min is

the smallest received power that can be detected by the radar.

Since we are considering our target to be a ship its RCS can be

approximated by the ship’s displacement in tons. An empirical

relation to calculate RCS is given by [21]

σ̄ = 52f1/2D3/2 m2

where f is the radar operating frequency in megahertz (MHz),

and D is the ship’s (full load) displacement in kilotons.

V. RECEIVER OPERATING CURVES (ROC)

Assume the target is located in the same azimuth as that of

cellular system. We are interested in finding the distribution of

signal-to-interference-plus-noise ratio (SINR) so as to evaluate

the radar’s ROC. The SINR at the radar can be written as

SINR =
Pre

−ψ

Pn +
∑N

i=1 Pir
−α
i eXi

=
e−ψ

Pn

Pr
+

1

Pr

∑N
i=1 Pir

−α
i eXi

·



Let us define γ � Pr/Pn, so that

SINR =
e−ψ

1

γ
+

1

Pr

∑N
i=1 Pir

−α
i eXi

· (17)

We are interested in the probability of detection PD which can

be expressed as

PD = 1− PMiss = 1− P(SINR < Γ) (18)

where PMiss is the probability of miss detection. The analog

to PMiss in wireless communications is the outage probability.

In order to characterize PMiss and consequently PD we are

interested in the distribution of SINR for which no closed form

expression exists and only approximations are used. However,

a lower bound on the PD of radar can be achieved by using

similar arguments as in [22].

In order to simplify equation (17) let us define

Δ � 1

γ
+

1

Pr

N∑
i=1

Pir
−α
i

ξi �
Pir

−α
i

PrΔ

ξ0 � 1

γΔ

where
∑N

i=0 ξi = 1. The SINR, in equation (17), can be

rewritten using above definitions as

SINR =
1

Δ

e−ψ

ξ0 +
∑N

i=1 ξie
Xi

·

Without loss of generality we assume μψ = 0 and μXi
= 0.

Then, the lower bound on the probability of miss detection

can be calculated by utilizing arithmatic-geometric mean in-

equality, as in [22]:

PMiss = P(SINR < Γ)

= P

(
e−ψ < ΓΔ

(
ξ0 +

N∑
i=1

ξie
Xi

))

≥ P

(
e−ψ < ΓΔ

N∏
i=1

eξiXi

)
= P

(
e−(ψ+

∑N
i=1 ξiXi) < ΓΔ

)
= P

(
ψ +

N∑
i=1

ξiXi > −( ln Γ + lnΔ
))

= 1−Q

(
ln Γ + lnΔ

σ

)
· (19)

TABLE I
RADAR SYSTEM PARAMETERS

Parameters Notations Values

Carrier Frequency f 3.5 GHz

Bandwidth B 10 MHz

Peak Transmit Power Pt,max 6 MW

Target RCS σ̄ 86084 m2

Radar Noise Floor Fn -100 dBm

Noise Power Pn kT0FnB

Boltzmann Constant k 1.38× 10−23 J/K

Standard Temperature T0 290 K

Transmit Antenna Gain Gt 42 dBi

Receive Antenna Gain Gr 36 dBi

TABLE II
CELLULAR SYSTEM PARAMETERS

Parameters Notations Values

Number of BSs N 100

Distance from Radar ri 5-6 Km

BS Power Pi 60 W

Path Loss Exponent α 3.5

Frequency Reuse Factor - 1

The variance σ2 can be evaluated as

σ2 = E

⎡⎣(ψ +

N∑
i=1

ξiXi

)2
⎤⎦

= σ2
ψ +

N∑
i=1

N∑
j=1

ξiξjρijσXi
σXj

= σ2
ψ + ζ2

N∑
i=1

N∑
j=1

ξiξj (20)

where equation (20) follows from the definition of jointly

correlated Gaussian random variables Xi and Xj , see equation

(4), the definition of ζ2 in Theorem 1, and the assumption that

target reflections and interference are independent. Then, the

bound on probability of detection PD can be evaluated from

equation (18) by using the result of equation (19).

VI. SIMULATION AND DISCUSSION

In this section, we present our quantitative results to comple-

ment the analytical results. We employ simplified assumption

on radar and cellular system parameters and their deployments

in order to facilitate quantitative analysis. The military radar

under consideration, SPY-1 of Aegis system, has a bandwidth

of 10 MHz and has approximately 6 dB more gain on the

transmit array. Moreover, they are capable to transmit at peak

power levels of up to 6 MW. Some other parameters, including

carrier frequency and noise floor are not necessarily exact, due
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Fig. 2. The cdf, FI(i;μI , ζ), of the aggregate interference for N = 100
cellular base stations and the limit distribution. The limit distribution is
reached for a large number of BSs but it is possible for radars which employ
large beamwidths to scan azimuth for targets and can easily cover hundreds
of BSs.

to the unavailability of such parameters, but this does not affect

in any way the results and the conclusions drawn. The radar

and cellular system simulation parameters are mentioned in

Tables I and II, respectively.

For the cellular system, we assume that the BS signals, Xi’s,

are zero-mean i.e. μXi = 0 for i = 1, 2, . . . , N , and has the

following variance and correlation structure:

σ2
Xi

=

{
6 dB, for 1 ≤ i ≤ ⌊N2 ⌋
12 dB, for

⌊
N
2

⌋
+ 1 ≤ i ≤ N

and

ρij =

⎧⎪⎨⎪⎩
0.80, for 1 ≤ i, j ≤ ⌊N2 ⌋ and i �= j

0.20, for
⌊
N
2

⌋
+ 1 ≤ i, j ≤ N and i �= j

0.40, elsewhere.

For the radar system, we assume, without loss of generality,

the log-normal target has zero mean, μψ = 0, and the variance

is determined by the fluctuating parameter ψ.

In Figure 2, we use a log-normal probability paper to

compare our results with the limiting distribution. It is a

useful tool to compare two distributions especially for log-

normal distributions which form a straight line when plotted

on a log-normal paper [15]. The absicca is transformed into

log(absicca) and we plot the corresponding probabilities on

vertical axis. We observe that the curve for 100 BSs is close

to the limit distribution for values of cdf between 10−6 and 1.

This value is very realistic for a search radar which employs

large beamwidths, i.e. larger Ω in Figure 1, and thus is capable

to scan a large azimuth which can cover areas containing

hundreds of BSs.

It is expected that the radar performance degrades when

subject to interference from a cellular system operating in

the same band. The lower bound on the probability of miss
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Fig. 3. Comparison of probability of miss with and without interference.
The probability of miss curve without interference is an exact curve but with
interference is a lower bound on the probability of miss targets.

detection for a log-normal target is given by equation (19).

This is used to compare the performance in Figure 3 for a

log-normal target with and without interference with different

detector threshold levels. These threshold levels are selected

based on a desired probability of false alarm. The results

indicate that under cellular interference a radar’s performance

is degraded considerably. This serves as a motivation to

introduce tolerable interference levels at the radar receiver and

design considerations for the deployment of cellular systems

in order to protect the radar from cellular interference.

In Figure 4, we analyze the probability of miss when the

radar engineer varies its transmit power, Pt,max, from 1 MWs

to 4 MWs, in order to counter the cellular interference. As

the radar’s transmit power is increased, the SINR increases,

and the performance increases. It is also noted from Figure 4

that when the transmit power increases the probability of miss

drops. This can be used to counter interference from cellular

systems.

In Figure 5, we analyze the probability of miss for targets

at different ranges. As expected, by increasing the target range

from the radar the SINR decreases and the probability of

miss increases. Hence, detection of far away targets will be a

challenge for radar in cellular interference. One way to counter

this is to increase transmit power in order to improve SINR

so as to get better detection performance.

VII. CONCLUSION

We investigate the performance of S-band seaborne military

radar when the incumbent is sharing its frequency band

with a commercial cellular system. The radar is subject to

interference from the cellular system and we evaluate the

radar’s performance under these new operating conditions.

First, we derive the aggregate distribution of cellular inter-

ference and prove that it is log-normal with probability 1.

Our method does not rely on approximations and moment

matching methods which are commonly used to characterize
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Fig. 4. Impact of cellular interference on the radar’s detection performance
when the radar has freedom to choose transmitted power in order to counter
interference. The target is present at a distance of 100 Kms.
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Fig. 5. Impact of cellular interference on the radar’s detection performance
when targets are present at different distances. The simulation parameters of
Tables I and II are used except that the radar transmits a 4 MW signal.

aggregate interference distribution. Second, we derive bounds

on the probability of detection and the probability of miss

detection under cellular interference.

The analytical results are complemented with the simulation

results where we access the detection performance of radar

under cellular interference. We show that for smaller SINR

values the difference in performance of radar detector with

and without interference is much more than at higher SINR

values. In addition, the targets that are far away are more hard

to detect due to low SINR in interference regimes. We show

the impact of interference can be minimized by using higher

transmit powers at the radar terminal to increase SINR and

thus have better detection performance.

The results presented serve as a motivation for further

exploration of spectrum sharing between radar and commercial

cellular systems so that both the systems can perform in an

optimum way. In addition to innovative interference mitigation

methods, policy level decisions, from regulators and cellular

operators, are required in order to make such a sharing

possible.
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