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Abstract—In this paper, we present a beampattern analysis
of the MIMO radar coexistence algorithm proposed in [1].
We extend the previous work and analyze the performance of
MIMO radars by projecting finite alphabet constant-envelope
waveforms onto the null-space of interference channel matrix.
First, we compare and analyze the Crameŕ-Rao bound (CRB)
on angle direction estimation. Second, we compare and analyze
beampatterns of the original radar waveform and the null-
projected radar waveform. Analytical and simulation results
show minimal degradation of a radar’s angle estimation of a
target and transmit-receive beampattern. We also propose meth-
ods to substantially improve angle estimation and beampatterns
of a null projected radar waveform which will not only guarantee
optimal performance of the radar but at the same time guarantee
coexistence of the radar and communication systems.

Index Terms—spectrum sharing, coexistence, MIMO radar,
beampattern

I. Introduction

The United States government is exploring ways to share

spectrum, currently in-use by the federal agencies, for com-

mercial utilization in order to satisfy the huge bandwidth

demands by consumers and business broadband users. In

recent studies conducted by the National Telecommunications

and Information Administration (NTIA), along with the FCC,

it has been noticed that huge chunks of spectrum reserved

for the federal agencies goes unused. This initiative will

result in huge economic and social prospects for the nation.

However, innovative approaches need to be seeked in order to

enable sharing of the federal spectrum without compromising

sensitive or classified information or operations.

One of the many spectrum bands identified by the FCC

for a possible sharing is the 3500-3650 MHz band where

the Department of Defense (DoD) operates many radars. A

launch of commercial communication systems would result

in unwanted electromagnetic interference (EMI) which can

jeopardize the radar mission. Therefore, novel techniques are

needed to enable spectrum sharing between a radar and a

communication system. One such technique was proposed

by Shabnam et al. [1] to share a radar’s spectrum with a

commercial communication system, e.g., WiMAX or LTE, in

the spatial domain. The authors proposed projecting MIMO

radar waveform onto the null-space of interference channel

matrix between the MIMO radar and MIMO communica-

tion system. Lackpour et. al. [2] proposed spatial, spectral,

temporal, and system level interference mitigation techniques

between WiMax systems and ground based radars. Deng et

al. proposed a signal processing approach for interference

mitigation from wireless communication systems to MIMO

radar by using a beamforming approach for MIMO radar [3].

NTIA also lists many solutions to mitigate interference from

communication systems to radars operating in the 2700-2900

MHz band [4]. Other related work can be found in [1] and

references therein.

The remainder of this paper is organized as follows. Sec-

tion II discusses system architecture. In Section III, we design

finite alphabet constant-envelope (FACE) radar waveforms. In

Section IV, we explain the null-space projection algorithm.

Section V derives the analytical expressions for CRB and

transmit-receive beampatterns for null-projected radar wave-

form. Section VI discusses simulation setup and provides

quantitative results along with the discussion. Section VII

concludes the paper.

II. System Architecture

In this paper, we consider a colocated MIMO radar, with

MT transmit antennas and MR receive antennas, and a MIMO

communication system, with NR receive antennas. The colo-

cated radars have an antenna spacing on the order of half the

wavelength of the carrier which gives better target parameter

identifiability, improved spatial resolution, but poor spatial

diversity as compared to widely-spaced radars [5]. The radar

and communication systems are the co-primary users of the 3.6

GHz band under consideration. A typical coexistence scenario

is shown in Fig. 1 where the MIMO radar is illuminating

a target while projecting its signal onto the null space of

interference channel HNR×MT between the radar and the com-

munication system and HMR×MT is the target impulse response

matrix. If x(t) is the signal transmitted from a radar, then the

received signal at a communication system receiver can be

written as

y(t) = HNR×MT x(t) + w(t) (1)

where w(t) is the additive white Gaussian noise and the goal

of a radar is to map its signals onto the null-space of HNR×MT

in order to avoid interference to a communication system.
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Fig. 1. Block diagram of the MIMO communication system and interfering
MIMO radar

III. FACE MIMO RadarWaveforms

The capability of a MIMO radar to have a diverse set of

waveforms and its ability to optimize waveforms according to

a desired transmit-receive beampatterns make it superior to a

phased array radar [6]. In this paper, we consider FACE radar

waveforms designed according to the following constraints

C1 : yHRxy ≥ 0,∀y
C2 : Rx(m,m) = 1 m = 1, 2, . . . ,MT

where C1 guarantees that the covariance matrix is a positive-

semidefinite matrix and C2 guarantees that all the anten-

nas transmit unit power waveforms. The constant-envelope

property of the waveform is important in order to allow

radio frequency amplifiers to operate at a maximum power

efficiency. We synthesize the covariance matrix Rx by the

method of Ahmed et al [7]. Their approach is novel since

they transform the problem of finding MIMO radar waveforms

to realize a given covariance matrix into finding a Gaussian

random variables to realize another covariance matrix using

memoryless nonlinear functions [7]. Once Rx is synthesized,

the waveform matrix X, with N samples, can be determined

as

X = XΛ1/2WH (2)

where X =
[
x1 x2 . . . xMT

]
∈ CN×MT with xi the waveform

transmitted from the ith antenna, X ∈ CN×MT is a matrix of

zero mean and unit variance Gaussian random variables, Λ ∈
RMT×MT is the diagonal matrix of eigenvalues and W ∈ CMT×MT

is the matrix of eigenvectors of Rx [7]. The distribution in

the columns of X is Gaussian. We are interested in BPSK

waveforms because of their low sidelobes. In order to generate

BPSK random variables to realize Rx, the Gaussian random

variables xm can be mapped onto BPSK symbol zm

zm = sign(xm), m ∈ {1, 2, . . . ,MT }. (3)

Once we design the BPSK waveforms we can write the signal

covariance matrix as

Rx =

∫
T0

x(t)xH(t)dt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γ12 · · · γ1MT

γ21 1 · · · γ2MT

...
...

. . .
...

γMT 1 γMT 2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Fig. 2. System Architecture

where x(t) =
[
x1(t) x2(t) · · · xMT (t)

]
, 0 ≤ |γi j| ≤ 1 is

the complex correlation coefficient between the ith and jth

transmitted signal, and the phases of γi j, {i, j} ∈ {1, 2, . . . ,MT },
control the transmitted beam direction, and T0 is the observa-

tion interval.

First, we are interested in finite-alphabet constant-envelope

orthonormal waveforms. For orthonormal waveforms, γ =
0. Orthonormal waveforms results in omnidirectional signal

transmission thus illuminating all angles. Thus, the signal

correlation matrix is an identity matrix, Rx = IMT .

Second, we are interested in finite alphabet constant-

envelope coherent waveforms. The coherent waveforms, γ = 1,

obey

x(t) = a∗T (θ0)x(t) (5)

where x(t) is the scalar transmit waveform. The beam is steered

to desired direction θ0 by the phases of a∗T (θ0). By substituting

(5) in (4) we get

Rx =

∫
T0

(
a∗T (θ0)x(t)

)(
a∗T (θ0)x(t)

)H
dt = a∗T (θ0)aT

T (θ0). (6)

IV. Spatial Coexistence through Null-Space Transmission

Null space based coexistence mechanisms, for cognitive

radios, have been proposed previously by many researchers

[8], [9]. To exploit transmission over null-space of the in-

terference channel H, the first step for the MIMO radar is

to estimate the interference channel, as shown in Figure 2.

In this paper, we assume that the communication system can

periodically inform the radar systems of its status, through a

cognitive pilot channel (CPC) [10]. After the channel matrix

H is estimated, the next step is to find the null space of H. The

null space of any matrix can be computed by using singular

value decomposition (SVD) theorem. For the complex channel

matrix H the SVD is given as

HNR×MT = UNR×NRΣNR×MT VH
MT×MT

(7)

where U is the complex unitary matrix, Σ is the diagonal

matrix of singular values, and VH is the complex unitary

matrix.

The columns of V corresponding to vanishing singular

values in matrix Σ span the null space of H. We denote this

by V̆. Next, we present an analysis of effects if the radar

transmits on the null space of H to avoid interference with
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the communication system [1]. The radar signal projected onto

null space of H can be written as

x̆ = PV̆x (8)

where

PV̆ = V̆(V̆HV̆)−1V̆H (9)

is the projection matrix onto the null space of H, which

is spanned by columns of V̆. It is easy to verify that the

projection matrix defined here satisfies the properties, PV̆ = PT
V̆

and PV̆ = P2

V̆
, of a projection matrix [11].

V. Analysis

A. Crameŕ-Rao bound (CRB): The Crameŕ-Rao bound is

the lower bound on the mean square error (MSE) of unbiased

estimators. The CRB for single target’s, no interference case,

direction estimation is given, as [6], by

CRB(θ) =
1

2SNR

(
MRȧH

T (θ)RT
x ȧT (θ) (10)

+ aH
T (θ)RT

x aT (θ)‖ȧR(θ)‖2 − MR

∣∣∣aH
T (θ)RT

x ȧT (θ)
∣∣∣2

aH
T (θ)RT

x aT (θ)

)−1

·

B. Beampatterns: In this section we derive analytical re-

sults of transmit-receive beampatterns for FACE MIMO radar

waveform projected onto the null-space of the interference

channel matrix H. The transmit and receive beampatterns,

which measure the beamformer’s response to a target at

direction θ, when the beam is steered digitally to a direction

θD, for MIMO radar in terms of transmit and receive steering

vectors are given, as [6], by

GTx(θ, θD) = KTx

|aH
T (θ)RT

x aT (θD)|2
aH

T (θD)RT
x aT (θD)

(11)

and

GRx(θ, θD) = KRx

|aH
R (θ)aR(θD)|2

MR
(12)

where KTx and KRx are normalization constants. The compos-

ite transmit-receive pattern can be jointly written as

GTx,Rx(θ, θD) = KTx,Rx

|aH
T (θ)RT

x aT (θD)|2
aH

T (θD)RT
x aT (θD)

|aH
R (θ)aR(θD)|2

MR
(13)

where KTx,Rx is the normalization constant.

1) Orthonormal Signals: For orthonormal signals Rx =

IMT , see equation (4), as γ = 0, substituting in (11) and (13)

and using the fact that aH
T (θD)aT (θD) = MT we have

GTxOrth
(θ, θD) = KTxOrth

|aH
T (θ)aT (θD)|2

MT
(14)

and

GTx,RxOrth
(θ, θD) = KTx,RxOrth

|aH
T (θ)aT (θD)|2

MT

|aH
R (θ)aR(θD)|2

MR
·
(15)

MT and MR can be manipulated to achieve beampatterns hav-

ing narrower mainlobes and sidelobes and improved angular

resolutions.

2) Coherent Signals: For coherent signals Rx =

a∗T (θ0)aT
T (θ0), see equation (6), substituting in (11) and (13)

we have

GTxCoh
(θ, θD) = |aH

T (θ)aT (θ0)|2 (16)

and

GTx,RxCoh
(θ, θD) = KCoh

|aH
T (θ)aT (θ0)|2|aH

R (θ)aR(θD)|2
MR

· (17)

For this case, MR, only, can be manipulated to achieve

beampatterns having narrower mainlobes and sidelobes and

improved angular resolutions.

3) Null-space Projected Signals: The radar waveform pro-

jected onto the null-space of H is given by x̆, see equation

(8), so we can write the correlation matrix of null-projected

transmitted signals as

Rx̆ =

∫
To

x̆(t) x̆H(t) dt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γ̆12 · · · γ̆1MT

γ̆21 1 · · · γ̆2MT

...
...

. . .
...

γ̆MT 1 γ̆MT 2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

where γ̆i j is the complex correlation coefficient between the

ith and jth transmitted signal, and the phases of γ̆i j, {i, j} ∈
{1, 2, . . . ,MT }, control the transmitted beam direction. Thus

the new transmit beampattern is given by

GTxNull
(θ, θD) = KTxNull

|aH
T (θ)RT

x̆ aT (θD)|2
aH

T (θD)RT
x̆ aT (θD)

(19)

and the transmit-receive beampattern is given by

GTx,RxNull
(θ, θD) = KTx,RxNull

|aH
T (θ)RT

x̆ aT (θD)|2
aH

T (θD)RT
x̆ aT (θD)

|aH
R (θ)aR(θD)|2

MR
·

(20)

Comparing equations (15) and (20), we note that the first term

in (20) introduces ambiguity in the transmit array gain due

to null-projected waveform. For a fixed value of θ and θD
the ambiguity in the transmit array gain is dependent on the

number of transmit antennas, MT . Increasing the number of

receive antennas, MR, can resolve the ambiguity in the overall

composite transmit-receive beampattern by achieving narrower

beams. This is also shown through simulation in the next

section and summarized in Table I. For analysis, we normalize

all beampatterns to one at the maximum point.

Lemma V.1. For orthonormal signals x(t), such that Rx =∫
T0

x(t)xH(t)dt = I, GTx(θ, θD) ≤ GTxNull (θ, θD).

Proof: The covariance matrix for projected waveforms is

given by equation (18). Consider writing Rx̆ = I + Γ, where

Γ �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ̆12 · · · γ̆1MT

γ̆21 0 · · · γ̆2MT

...
...

. . .
...

γ̆MT 1 γ̆MT 2 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· (21)

We select KTxOrth
and KTxNull

such that the denominators of

equations (14) and (19) are normalized to unity. Then, using
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equation (21), we can write

GTxNull
(θ, θD) = |aH

T (θ)RT
x̆ aT (θD)|2

= |aH
T (θ)(I + Γ)T aT (θD)|2

= |aH
T (θ)aT (θD) + aH

T (θ)ΓT aT (θD)|2
≥ |aH

T (θ)aT (θD)|2 � GTxOrth
(θ, θD) (22)

where equation (22) follows from triangle inequality for com-

plex numbers.

Lemma V.2. For orthonormal signals x(t), such that Rx =∫
T0

x(t)xH(t)dt = I, GTx,RxOrth (θ, θD) ≤ GTx,RxNull (θ, θD).

Proof: We select KTx,RxOrth
and KTx,RxNull

such that the

denominators of equations (15) and (20) are normalized to

unity. Then, using equation (21), we can write

GTx,RxNull
(θ, θD) = |aH

T (θ)RT
x̆ aT (θD)|2|aH

R (θ)aR(θD)|2
= |aH

T (θ)(I + Γ)T aT (θD)|2|aH
R (θ)aR(θD)|2

= |aH
T (θ)aT (θD) + aH

T (θ)ΓT aT (θD)|2|aH
R (θ)aR(θD)|2

≥ |aH
T (θ)aT (θD)|2|aH

R (θ)aR(θD)|2 (23)

= GTx,RxOrth

where equation (23) follows from triangle inequality for com-

plex numbers.

VI. Quantitative Analysis

In this section, we simulate the radar system and study the

impact of null space projection on the radar waveform using

the simulation parameters and setup of [1]. The null space

of H is computed using SVD. Since Σ doesn’t always have

zero singular values, we take singular values below a certain

threshold and take corresponding columns of VH . For example,

SVD of H results in Σ with no zero singular values but the

last two singular values are below a certain threshold so we

take the columns of VH corresponding to those singular values

and then using (9) construct PV̆. We transmit finite alphabet

constant-envelope BPSK waveforms.

A. CRB

In this section, we compare the performance in terms of

CRB for the two cases with or without confining the radar

signal to the null space of H for 1000 realizations of a

Rayleigh fading channel H of size NR × MT . Using the

simulation parameters mentioned in [1], the CRB on target

direction estimation root-mean-square-error (RMSE) vs. SNR

for a fixed θ and a single target is shown in Fig. 3 for different

values of γ.
In Figure 3, the CRB for null space projected signal is high

in RMSE as compared to the no null space projected signal.

When γ = 0, the orthonormal waveform case, the RMSE is

lowest possible for both original and projected waveforms,

whereas, the γ = 1, the fully coherent waveform case, the

RMSE is much higher than the orthonormal waveform case.

The penalty in RMSE, is the direct result of constraint we

are putting on radar signal that it should be in the null space

of H. Figure 3 shows that through projection we lose some
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Fig. 4. Normalized transmit–receive beampatterns; MT = 9 and MT = 9;
MR = 9 transceiver elements with interelement spacing of 3λ/4. The beams
are digitally steered to θD = 0◦ and the target is located at θ = 0◦.

information. This might be critical information depending on

the radar mission. Also, choice of radar waveform, value of

parameter γ for FACE radar waveforms, plays an important

role in the projection algorithm.

B. Beampattern

In this section, we analyze the beampatterns for different

values of γ using the antenna setup of [1] for 5000 realizations

of H. We study the composite transmit-receive beampatterns

because of their narrower null-to-null beamwidths and smaller

sidelobes. Another advantage of studying composite beam-

patterns is that it gives an unambiguous beampattern due to

presence of both transmit and receive beampatterns. If one

pattern has an ambiguity, for example grating lobes, the other

may resolve it [6].

When the radar signal is projected onto the null-space of H,

we get a modified radar signal with a new signal correlation

matrix, see equation (18). The transmit-receive beampattern
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for this new signal, solid lines, is shown in Fig. 4 along

with the beampattern for original signal, dotted lines, for

comparison for three values of γ. We observe that the shape

of beampattern of null-projected signal doesn’t change much

except that we have sidelobes which are approximately 10

to 12 dB higher in magnitude. The null-to-null beamwidth

of mainlobe and sidelobes, of null-projected waveform, are

almost same as that of original radar waveform. Another

important thing to note is that the projected waveform didn’t

steer the beam off the target and there is no beam shape loss

thus guaranteeing the radar mission objectives.

C. MIMO Radar Antennas

In the previous work, we evaluated performance as we

increased the number of radar antennas. We showed that

the CRB improves more rapidly as the number of receive

antennas is increased as compared to the transmit antennas.

So in terms of radar performance we need to select optimal

number of receive antennas to achieve desirable performance

[1]. In this paper, we analyze the impact of radar antennas

on beampattern. In Figure 5(a), we look at the shape of

transmit-receive beampattern as we increase the MIMO radar

transmit antennas. Increasing the number of transmit antennas

has no effect on the null-to-null beamwidth of mainlobe and

sidelobes. However, the magnitude of sidelobes do decrease. In

Figure 5(b), we look at the shape of transmit-receive beampat-

tern as we increase the MIMO radar receive antennas while

keeping the transmit antennas of radar and communication

system fixed. The important thing to note is that narrower null-

to-null beamwidths of mainlobe and sidelobes can be achieved

by increasing MR even for null-projected waveforms without

affecting the magnitude of sidelobes.

D. Threshold

In our previous work, we showed that by increasing the

value of threshold the radar performance increases [1]. Recall

that threshold is the limitation parameter in the projection

algorithm and in the SVD of H those singular values are

selected which are below the threshold. This means if the

channel matrix has a large null space the radar performance

won’t be affected much.

In Figure 6, we analyze the effect of threshold value on the

transmit-receive beampattern of null-projected radar waveform

for γ = 0. As the threshold value increases the null-to-

null beamwidth of the mainlobe and sidelobes stay the same.

However, the magnitude of the sidelobes decreases. There is

approximately a 5 dB drop in magnitude of sidelobes for

every unit increase in the threshold value. Thus, selecting an

optimal value for the threshold can limit the magnitude of the

sidelobes.

E. Error

We define the error in the beampattern of the original radar

waveform and the projected radar waveform as

ε(θ) � GTx,Rx(θ, θD) −GTxNull,RxNull
(θ, θD)

GTxNull,RxNull
(θ, θD)

, (24)
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TABLE I
Transmit-Receive Beampattern Analysis

Radar Waveform Parameter
Null-to-null Magnitude of
Beamwidth Sidelobes

Null-projected
MT ↑ Stays same ↓
MR ↑ ↓ Stays same
Threshold ↑ Stays Same ↓

FACE MT MR ↑ ↓ ↓

where θ ∈ {−45◦, 45◦} and θD = 0◦. ε(θ) describes the error in

the transmit-receive beampattern for various angles when the

beam is digitally steered to θD = 0◦ for the FACE waveform

and its null projected version. This is shown in Figure 7

for various γ. Note that the difference between the original

and projected waveform is zero for angles close to 0◦, i.e

the direction of digitally steered beam. Hence, the projection

algorithm does not steer the beam off the target.

Hence, for the null-projected radar waveform we analyze

the following trends, which are also summarized in Table I:

• Null-to-null beamwidth

– stays same with the increase in number of radar

transmit antennas MT and/or threshold value, and

– decreases with the increase in number of radar re-

ceive antennas MR.

• Magnitude of sidelobes

– decreases as we increase MT ,

– stays same with the increase in number of radar

receive antennas MR, and

– decreases with increase in the threshold value.

VII. Conclusion

In this paper, we designed a finite alphabet constant-

envelope (FACE) radar waveform and projected it onto the

null space of interference channel. We computed the CRB

performance bound, for target direction estimation given that

radar transmits FACE waveforms, for the two cases of pro-

jection onto null space and no null space projection. We

showed that the loss in the performance of a radar in terms of

RMSE is due to the projection of radar signals onto the null

space of H. We compared and analyzed the transmit-receive

beampattern of original radar waveform and the null-projected

radar waveform. We showed that both have the same null-to-

null beamwidth but the null-projected waveform has higher

sidelobes. We also showed that the null-projected waveform

didn’t steer the beam off the target and/or lose beam shape

thus preserving radar mission objectives. Through simulation

we showed that in order to preserve the radar performance in

terms of RMSE we can optimally choose the number of receive

antennas to compensate for the loss that projecting the radar

signals onto the null space of the channel matrix can cause.

In addition, we showed the impact of threshold selection, in

the projection algorithm, on the performance of radar system.

RMSE, of angle estimates, and magnitude of sidelobes, in the

transmit-receive beampattern, can be decreased and brought

to a reasonable level by the appropriate selection of threshold

value.

The results derived in this paper show that null-space

coexistence methods can work in the case of radar thus

guaranteeing radar mission objectives. However, it comes with

a cost when using null space based approach. The cost paid

is more RMSE of radar target direction estimate and higher

magnitude of sidelobes in the transmit-receive beampattern.
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