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Abstract—In this paper, we consider resource allocation opti-
mization problem in fourth generation long term evolution (4G-
LTE) for public safety and commercial users running elastic
or inelastic traffic. Each mobile user can run delay-tolerant
or real-time applications. In our proposed model, each user
equipment (UE) is assigned a utility function that represents the
application type running on the UE. Our objective is to allocate
the resources from a single evolved node B (eNodeB) to each
user based on the user application that is represented by the
utility function assigned to that user. We consider two groups of
users, one represents public safety users with elastic or inelastic
traffic and the other represents commercial users with elastic or
inelastic traffic. The public safety group is given priority over
the commercial group and within each group the inelastic traffic
is prioritized over the elastic traffic. Our goal is to guarantee a
minimum quality of service (QoS) that varies based on the user
type, the user application type and the application target rate.
A rate allocation algorithm is presented to allocate the eNodeB
resources optimally among public safety and commercial users.
Finally, the simulation results are presented on the performance
of the proposed rate allocation algorithm.

Index Terms—Resource Allocation, Application Target Rate,
Elastic Traffic, Inelastic Traffic

I. INTRODUCTION

The public safety wide area wireless communication system
is currently separate from the commercial cellular networks.
Industries are willing to support both communities by provid-
ing a common technology. Release 12 of 3GPP LTE standards
will enhance LTE to support public safety requirements. Ad-
vanced standards such as LTE provide multimedia capabilities
and voice and messages services at multi-megabit per second.
The services that public safety networks provide such as
communications for police, fire and ambulance require systems
development to meet the communication needs of emergency
services.

A common technical standard for commercial and public
safety users provides advantages for both. The public safety
systems market is much smaller than the commercial cellular
market which makes it unable to attract the level of investment
that goes in to commercial cellular networks and this makes
a common technical standards for both the best solution. The
public safety community gains access to the technical advan-
tages provided by the commercial cellular networks whereas
the commercial cellular community gains enhancement in their
systems and make it more attractive to consumers. The USA
has reserved spectrum in the 700MHz band for an LTE based

public safety network. The current public safety standards
support medium speed data which drives the need of new
technology.

In [1], the author presented a utility proportional fairness re-
source allocation approach, where fairness is in utility percent-
age, for 4G-LTE that optimally allocate one eNodeB resources
based on the optimization problem that solves for elastic and
inelastic utility functions. The rate allocation algorithm in
[1] gives priority to real-time applications over delay-tolerant
applications and guarantees a minimum QoS when allocating
resources.

In this paper, we focus on finding an optimal solution
for the resource allocation problem for two groups of users
running two types of applications presented by logarithmic
utility functions or sigmoidal-like utility functions. These
utility functions are concave and non-concave utility functions
respectively. The optimization problem allocates part of the
bandwidth from one eNodeB to each user subscribing for
a mobile service taking into consideration that each user is
getting a minimum QoS. In addition, the public safety users
in emergency mode are given priority over the commercial
users and within each group the non concave functions that are
approximated by sigmoidal-like functions and presenting real-
time applications are given priority over the concave functions
approximated by logarithmic functions and presenting delay
tolerant applications. In our system model, each public safety
subscriber has an assigned application target rate that varies
based on the application type and assigned to the public safety
subscriber by the network.

Our resource allocation algorithm first allocates the appli-
cation target rate to each public safety UE when that UE is
in emergency mode. It then allocates the remaining resources
among the commercial UEs subscribing for resources.

A. Related Work

In [2], The authors introduced bandwidth proportional fair-
ness (Frank Kelly algorithm). This algorithm is an iterative
process for determining rate allocation as well as the price
the network should charge for given sets of resources. The
iterative nature of the solution allows users to bid for resources
until the allocated rate matches the optimal rate based on
bandwidth proportional fairness. In [3], the author presented a
weighted aggregation of elastic and inelastic utility functions
for each UE. The utility functions are then approximated to the
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nearest concave utility function from a set of functions using
minimum mean square error. The resulting utility functions
are solved using a modified version of the distributed rate
allocation algorithm by Frank Kelly [2].

A rate allocation with carrier aggregation is presented in [4].
The authors used two stage modified Frank Kelly algorithm
to allocate two carriers resources optimally among UEs with
real time applications or delay tolerant applications. One of
the carriers is primary carrier and is used in the first stage
of the algorithm whereas the other is secondary carrier and is
used in the second stage. A priority is given to the real time
applications presented by a sigmoidal-like utility functions
while allocating resources in each stage. In [5], the authors
presented two stage resource allocation algorithm to allocate
optimal rates to users running multiple applications from one
eNodeB. The proposed algorithm achieves the optimal rates
without eNodeB knowledge of the UEs utilities.

In [6], a Round Robin packet scheduling method is used
to distribute the load across the network. This method is not
fair for resource allocation as the network could be inefficient
in bandwidth and throughput. In [7] and [8], the authors
used elastic and sigmoidal-like utility functions in a non-
convex optimization problem to maximize utility functions in
wireless networks. Using max-min architecture, the authors in
[9] proposed a utility proportional fair optimization approach
for high SINR wireless networks.

B. Our Contributions

Our contributions in this paper are summarized as:
• We present a resource allocation optimization problem to

allocate the eNodeB resources optimally among public
safety and commercial users. The eNodeB and the UE
collaborate to allocate an optimal rate to each UE with
priority given to public safety users. Within the same
group of users, a priority is given to real time applications
presented by sigmoidal-like utility functions.

• We show that each of our two cases resource allocation
(RA) optimization problems has a unique tractable global
optimal solution.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation. In section III, we
present the two cases resource allocation optimization prob-
lems. Section IV presents our distributed carrier aggregation
rate allocation algorithm for the utility proportional fairness
optimization problem. In section V, we discuss simulation
setup and provide quantitative results along with discussion.
Section VI concludes the paper.

II. PROBLEM FORMULATION

We consider single cell 4G-LTE mobile system with a single
eNodeB, N commercial UEs and M public safety UEs. The
user i is allocated certain bandwidth ri based on the type of
application the UE is running. Each user is assigned a utility
function Ui(ri) based on the application running on the UE
and whether it is a commercial or public safety user. Our
goal is to determine the optimal bandwidth that needs to be
allocated to each user by the eNodeB.

The utility functions Ui(ri) are assumed to be a strictly
concave or a sigmoidal-like functions. The utility functions
Ui(ri) have the following properties:

• Ui(0) = 0 and Ui(ri) is an increasing function of ri.
• Ui(ri) is twice continuously differentiable in ri and

bounded above.
In our model, we use the normalized sigmoidal-like utility

function presented in [10], that is

Ui(ri) = ci

( 1

1 + e−ai(ri−bi)
− di

)
(1)

where ci = 1+eaibi

eaibi
and di = 1

1+eaibi
that satisfies U(0) = 0

and U(∞) = 1. The inflection point of the normalized
sigmoidal-like function is at rinf

i = bi. Additionally, we use
the normalized logarithmic utility function used in [9] to
represent a delay tolerant application, this utility function can
be expressed as

Ui(ri) =
log(1 + kiri)

log(1 + kirmax)
(2)

where rmax gives 100% utility percentage for any user and ki
is the slope of the curve of the logarithmic utility function
that varies from user to user. So, it satisfies U(0) = 0 and
U(rmax) = 1. The inflection point of normalized logarithmic
function is at rinf

i = 0
The basic formulation of the resource allocation problem is

given by the following optimization problem:

max
r

M∏
i=1

Ui(ri,s)

N∏
j=1

Uj(rj,c)

subject to
M∑
i=1

ri,s +

N∑
j=1

rj,c ≤ R,

ri,s ≥ rti,s, i = 1, 2, ...,M

rj,c ≥ 0, j = 1, 2, ..., N.

(3)

where R is the maximum achievable rate of the eNodeB,
r = {r1,s, ..., rM,s, r1,c, ..., rN,c} where ri,s is the rate for
public safety user i, rj,c is the rate for commercial user j,
rti,s is the application target rate for public safety user i
which is the mnimum rate that the user wants to achieve, M
and N are the numbers of the public safety and commercial
UEs, respectively. The resource allocation objective function
maximizes the product of users utilities system utility when
allocating resources to each user. Therefore, it provides a
proportional fairness among utilities. Public safety users that
are running real-time applications are given the priority when
allocating resources by the eNodeB. The next priority is given
to the elastic traffic running by public safety users. Once
each public safety user satisfies its application target rate the
eNodeB starts allocating resources to commercial users giving
priority to users running real time applications. We assume that
the public safety users are in an emergency mode, therefore
these users are given a higher priority over the commercial
users. The optimization problem (3) has a unique tractable
global optimal solution [1] that will be discussed in the next
section.
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We used utility proportional fairness model because non-
zero rate allocation is guaranteed to all users. So it is im-
possible to set a users allocation to zero without setting the
efficiency of the network to zero. Because this resource does
not disenfranchise any given user, it will be considered as an
appropriate fairness model for this problem.

III. RESOURCE ALLOCATION OPTIMIZATION PROBLEM

The resource allocation for public safety and commercial
users is divided into two cases. The first case is when the
maximum available resources R for the eNodeB is less than
the sum of the total application target rates of the public
safety UEs subscribing for a service from that eNodeB and the
second case is when R is greater than that total. The two cases
are two different optimization problems that will be solved by
our proposed algorithm to obtain the optimal rate for each UE.

A. The First Case RA Optimization Problem when∑M
i=1 r

t
i,s ≥ R

As mentioned before the first case optimization problem
is applied in the case of

∑M
i=1 r

t
i,s ≥ R. In this case the

eNodeB only allocates resources to the public safety users
because they are considered more important and the eNodeB’s
available resources doesn’t exceed their need. The commercial
users will not be given any of the eNodeB resources in this
case. This optimization problem can be written as:

max
r

M∏
i=1

Ui(ri,s)

subject to
M∑
i=1

ri,s ≤ R,

0 ≤ ri,s ≤ rti,s, i = 1, 2, ...,M.

(4)

where Ui is the public safety ith utility function and r =
{r1,s, ..., rM,s} and M is the number of public safety UEs in
the coverage area of the eNodeB. The solution of the optimiza-
tion problem (4) is the optimal solution when

∑M
i=1 r

t
i,s ≥ R.

This solution will guarantee the public safety users priority
when allocating the eNodeB resources. The optimal rate for
each public safety UE is less than or equal to the application
target rate for each public safety UE. The public safety users
running real time applications will be given priority over
public safety users with elastic traffic.

The objective function in the optimization problem (4) is
equivalent to max

r

∑M
i=1 logUi(ri,s). The optimization prob-

lem (4) is a convex optimization problem and there exists a
unique tractable global optimal solution as shown in Theorem
(III.1) [1]. This optimal solution gives each of the M users an
optimal rate ropt

i,s.

B. The Second Case RA Optimization Problem when∑M
i=1 r

t
i,s<R

The second case optimization problem is applied in the
case of

∑M
i=1 r

t
i,s<R. The eNodeB collaborate with the UEs

to solve this optimization problem. The eNodeB allocates

resources to both the public safety and commercial users
because its available resources exceed the minimum need of
the public safety UEs expressed by the application target rates.
As mentioned before, the eNodeB gives priority to the public
safety users and within the public safety group the priority is
given to the UEs running inelastic traffic. This optimization
problem can be written as:

max
r

M∏
i=1

Ui(ri,s)

N∏
j=1

Uj(rj,c)

subject to
M∑
i=1

ri,s +

N∑
j=1

rj,c ≤ R,

ri,s ≥ rti,s, i = 1, 2, ...,M

rj,c ≥ 0, j = 1, 2, ..., N.

(5)

This optimization problem is same as the one discussed
in the problem formulation (section II). First, the eNodeB
allocates the application target rate to each public safety UE. It
then starts allocating its remaining resources both to the public
safety and commercial UEs based on utility proportional
fairness. The solution of the optimization problem (5) is the
global optimal solution that gives an optimal rate ropt

i,s to each
public safety UE and an optimal rate ropt

i,c to each commercial
user UE.

Proposition III.1. The optimization problem (5) is a convex
optimization problem and there exists a unique tractable
global optimal solution.

Proof. We introduce a new parameter ci where ci is the
application target rate for the public safety UE whereas it is 0
for the commercial UE, the optimization problem (5) can be
rewritten as follows:

max
r

M+N∏
i=1

Ui(ri + ci)

subject to
M+N∑
i=1

(ri + ci) ≤ R,

ri ≥ 0, i = 1, 2, ...,M +N.

(6)

ci =

{
rti,s if public safety UE
0 if commercial UE

where R is the maximum achievable rate of the eNodeB,
r = {r1, ..., rM , rM+1, ..., rM+N} where the first M rates are
for the M public safety users and the last N rates are for the
N commercial users, Ui(ri + ci) is the UE utility function,
this optimization problem guarantees an optimal rate that is at
least equal to the application target rate for the public safety
UE. The objective function in the optimization problem (6)
can be written as

∑M+N
i=1 logUi(ri + ci).

The utility function Ui(ri + ci) for the UE is strictly
concave or sigmoidal-like function as mentioned in section
II. As shown in Theorem (III.1) [1], logUi(ri) is a strictly
concave function for a strictly concave or sigmoidal-like utility
function. It follows that the optimization problem 6 that is
equivalent to (5) is convex. Therefore, there exists a tractable
global optimal solution for the optimization problem (5).
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IV. ALGORITHM

In our proposed iterative algorithm, the eNodeB and the UEs
collaborate to allocate optimal rates for the public safety and
commercial users subscribing for a mobile service. Algorithm
1 and algorithm 2 are the public safety UE and the commer-
cial UE algorithms, respectively. Algorithm 3 is the eNodeB
algorithm. The algorithm starts when each UE transmits an
initial bid wi(1) to the eNodeB. Additionally, each public
safety UE transmits its application target rate to the eNodeB.
The eNodeB checks whether the

∑M
i=1 r

t
i,s is less or greater

than R and send a flag with this information to each UE. In
the case of

∑M
i=1 r

t
i,s ≥ R, the commercial UEs will not be

allocated any of the resources and will not be sending any
further bids to the eNodeB unless they receive a flag from the
eNodeB with

∑M
i=1 r

t
i,s<R.

On the other hand, each public safety UE checks whether
the difference between the current received bid and the previ-
ous one is less than a threshold δ, if so it exits. Otherwise, if
the difference is greater than δ, eNodeB calculates the shadow
price p(n) =

∑M
i=1 wi(n)

R . The estimated p(n) is then sent
to the public safety UEs where it is used to calculate the
rate ri,s(n) which is the solution of the optimization problem
ri,s(n) = argmax

ri,s

(
logUi(ri,s)−p(n)ri,s

)
. A new bid wi(n)

is calculated using ri(n) where wi(n) = p(n)ri,s(n). All
public safety UEs send their new bids wi(n) to the eNodeB.
The Algorithm is finalized by the eNodeB. Each public safety
UE then calculates its allocated rate ropt

i,s = wi(n)
p(n) .

In the case of
∑M

i=1 r
t
i,s<R, the eNodeB sends a flag with

this information to each UE. Each public safety and commer-
cial UE checks whether the difference between the current
received bid and the previous one is less than a threshold δ,
if so it exits. Otherwise, if the difference is greater than δ,
eNodeB calculates the shadow price p(n) =

∑M+N
i=1 wi(n)

R . The
estimated p(n) is then sent to the public safety and commercial
UEs where it is used by the public safety UE to calculate the
rate ri,s(n) = ri+r

t
i,s which is the solution of the optimization

problem ri,s(n) = argmax
ri,s

(
logUi(ri + ci)− p(n)(ri + ci)

)
.

A new bid wi(n) is calculated by the public safety UE using
ri(n) where wi(n) = p(n)(ri(n) + ci). All public safety
UEs send their new bids wi(n) to the eNodeB. On the other
hand, the commercial UEs receive p(n) and use it to calculate
the rate ri,c(n) which is the solution of the optimization
problem ri,c(n) = argmax

ri,c

(
logUi(ri,c) − p(n)ri,c

)
. A new

bid wi(n) is calculated by the commercial UE using ri,c(n)
where wi(n) = p(n)ri(n). All public safety UEs send their
new bids wi(n) to the eNodeB. The Algorithm is finalized
by the eNodeB. Each public safety UE then calculates its
allocated rate ropt

i,s = wi(n)
p(n) and each commercial UE calculates

its allocated rate ropt
i,c = wi(n)

p(n) .

V. SIMULATION RESULTS

We consider one eNodeB with four public safety UEs and
another four commercial UEs in its coverage area. We use
multiple sigmoidal-like and logarithmic utility functions in

Algorithm 1 Public Safety UE Algorithm

Send initial bid wi(1) to eNodeB
Send the application target rate rt

i,s to eNodeB
loop

while Flag
∑M

i=1 r
t
i,s ≥ R from eNodeB do

Receive shadow price p(n) from eNodeB
if STOP from eNodeB then

Calculate allocated rate ropt
i,s = wi(n)

p(n)
else

Solve ri,s(n) = argmax
ri,s

(
logUi(ri,s)− p(n)ri,s

)
Send new bid wi(n) = p(n)ri,s(n) to eNodeB

end if
end while
while Flag

∑M
i=1 r

t
i,s<R from eNodeB do

Receive shadow price p(n) from eNodeB
if STOP from eNodeB then

Calculate allocated rate ropt
i,s = wi(n)

p(n)
else

Solve ri,s(n) = ri + rt
i,s = argmax

ri

(
logUi(ri +

ci)− p(n)(ri + ci)
)

Send new bid wi(n) = p(n)(ri(n) + ci) to eNodeB
end if

end while
end loop

Algorithm 2 Commercial UE Algorithm

Send initial bid wi(1) to eNodeB
loop

while Flag
∑M

i=1 r
t
i,s ≥ R from eNodeB do

Allocated rate ropt
i,c = 0

end while
while Flag

∑M
i=1 r

t
i,s<R from eNodeB do

Receive shadow price p(n) from eNodeB
if STOP from eNodeB then

Calculate allocated rate ropt
i,c = wi(n)

p(n)
else

Solve ri,c(n) = argmax
ri,c

(
logUi(ri,c)− p(n)ri,c

)
Send new bid wi(n) = p(n)ri,c(n) to eNodeB

end if
end while

end loop

our simulations and present two cases, one when the eNodeB
resources R is less than the total application target rates of the
public safety UEs and the other when R is greater than that
total. We applied algorithm 1, 2 and 3 in C++ to the sigmoidal-
like and logarithmic utility functions. The simulation results
showed convergence to the optimal global point in both cases.
We present the simulation results for eight utility functions
that correspond to public safety and commercial UEs running
real time application or delay tolerant applications. We use
two normalized utility functions expressed in equation (1) with
different parameters a and b for each utility function, a = 3,
b = 20 for the first public safety user, a = 1, b = 30 for the
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Algorithm 3 eNodeB Algorithm

loop
Receive bids wi(n) from UEs {Let wi(0) = 0 ∀i}
Receive application target rates from public safety UES
while

∑M
i=1 r

t
i,s ≥ R do

Send flag
∑M

i=1 r
t
i,s ≥ R to all UEs

if |wi(n)− wi(n− 1)| < δ, i = {1, ....,M} then
STOP and allocate rates (i.e ropt

i,s to public safety user
i)

else
Calculate p(n) =

∑M
i=1 wi(n)

R , i = {1, ....,M}
Send new shadow price p(n) to public safety UEs

end if
end while
while

∑M
i=1 r

t
i,s<R do

Send flag
∑M

i=1 r
t
i,s<R to all UEs

if |wi(n)− wi(n− 1)| < δ ∀i then
STOP and allocate rates (i.e ropt

i,s or ropt
i,c to user i)

else
Calculate p(n) =

∑M+N
i=1 wi(n)

R
Send new shadow price p(n) to all UEs

end if
end while

end loop

second public safety user. We set the application target rate rti,s
for these two users to equal b that is 20 and 30 respectively.
Another two normalized utility functions are used with the
same a and b parameters to represent two commercial users
running real time applications. Each sigmoidal-like function is
an approximation to a step function at rate b. We also use two
logarithmic functions expressed in equation (2) with different
parameters k = 3 for one public safety UE and k = 0.5 for
second public safety UE running delay tolerant application.
We set the application target rate rti,s for each these two users
to equal 15. Another two logarithmic utility functions are used
with the same k parameters to represent two commercial users
running delay tolerant applications.

A. Convergence Dynamics for R = 70 where
∑M

i=1 r
t
i,s ≥ R

This represents the first case where
∑M

i=1 r
t
i,s ≥ R. We

set R = 70 and δ = 10−2. As mentioned before, in this
case the commercial UEs will not be allocated any of the
eNodeB resources because R does not exceed the public safety
application target rates which need to be satisfied before the
eNodeB starts allocating resources to the commercial users.
In Figure 1, we show the simulation results for the rate of
different public safety users and the number of iterations.
The sigmoidal-like utility functions are given priority over the
logarithmic utility functions for rate allocation. This explain
the results we got in Figure 1. In this case the final optimal
rate does not exceed the user application target rate. In Figure
2, we show the bids of the four public safety users with the
number of iterations. As expected, user rates are proportional
to the user bids. The algorithm allows users with real-time
applications to bid higher than the other users until each one

of them reaches its inflection point, which is equivalent to
their application target rates, then users with elastic traffic start
dividing the remaining resources among them based on their
parameters while not exceeding their application target rates.
In Figure 3, we show the shadow price p(n) with the number
of iterations where the convergence behavior of the shadow
price with the number of iterations is shown.

Fig. 1: The rates ri(n) with the number of iterations n for
different users and R = 70.

Fig. 2: The bids convergence wi(n) with the number of
iterations n for different users and R = 70.

Fig. 3: The shadow price convergence with the number of
iterations n.

B. Convergence Dynamics for R = 200 where
∑M

i=1 r
t
i,s<R

Figure 4 shows four public safety normalized sigmoidal-
like utility functions expressed in equation (1) correspond-
ing to two public safety users and another two commercial
users. We also show four logarithmic functions expressed in
equation (2), which represent delay tolerant applications for
two public safety users and another two commercial users.
We set R = 120 and δ = 10−2. This represents the second
case where

∑M
i=1 r

t
i,s<R. In this case the public safety UES

are given priority over the commercial UEs. In Figure 5, we
show the simulation results for the rate of different public
safety and commercial users and the number of iterations.,
first the algorithm allocates an equivalent amount of resources
to the application target rate to each public safety user. It
then starts allocating resources to each commercial UE with
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inelastic traffic until it reaches the inflection point of that user
utility function. It then starts dividing the remaining resources
among all users based on their parameters. In Figure 6, we
show the bids of the eight users with the number of iterations.
The algorithm allows public safety users to bid higher than
the other users until each one of them reaches its application
target rate. Commercial users with inelastic traffic then start
bidding higher until they reach each utility function reaches its
inflection point. In Figure 7, we show the shadow price p(n)
with the number of iterations where the convergence behavior
of the shadow price with the number of iterations is shown.

Fig. 4: The users utility functions Ui(ri + ci).

Fig. 5: The rates ri(n) with the number of iterations n for
different users and R = 200.

Fig. 6: The bids convergence wi(n) with the number of
iterations n for different users and R = 200.

VI. SUMMARY AND CONCLUSIONS

In this paper, we presented a resource allocation approach
to allocate a single eNodeB resources optimally among public
safety and commercial users in 4G-LTE. We considered two

Fig. 7: The shadow price convergence with the number of
iterations n.

utility functions based on the UE application type. One rep-
resents real time applications and the other represents delay
tolerant applications. We considered two resource allocation
optimization problems based on the amount of resources
available by the eNodeB. One is when the eNodeB resources
are less than or equal to the total application target rates of
the public safety users subscribing for a service. The other is
when the eNodeB resources greater than that total. The solu-
tion to each optimization problem is characterized by utility
proportional fairness. We proposed an iterative decentralized
algorithm for the eNodeB and both the public safety and
commercial UEs. The algorithm provides a utility proportional
fair resource allocation which guarantees a minimum QoS
based on the public safety UEs application target rates, the
group that the UE belongs to and the eNodeB available re-
sources. The public safety users group is given priority over the
commercial users group and within each group, users running
real time applications are prioritized over those running delay
tolerant applications. We showed through simulations that our
algorithm converges to the optimal rates.
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