IMPACT OF MOBILITY ON MULTICAST CAPACITY OF WIRELESS NETWORKS

Wireless Networking and Communications Group

Ahmed Abdel-Hadi, Jubin Jose, Piyush Gupta and Sriram Vishwanath

System Model

- We have n node in a unit area disk, n_s sources and n^{e-1} destination per source.
- We consider hybrid system with n^r mobile nodes and the rest are static.

A) Geographically Unrestricted Mobility (GUM)

- We consider both protocol and physical model for interference.
- The total multicast throughput in case $\gamma=1$ is

$$\Theta\left(\min\left\{n_{s},n^{\varepsilon}\right\}\right)$$

• The total multicast throughput in case $\gamma \neq 1$

$$\Omega\left(\min\left\{n_{s}, \max\left\{\frac{n^{\gamma+\varepsilon-1}}{\log n} \frac{\sqrt{n^{\varepsilon}}}{\sqrt{\log n}}\right\}\right\}\right)$$

B) Geographically Restricted Mobility (GRM)

- Mobile nodes are restricted to move within $\Theta(n^{\alpha})$ clusters.
- We consider two cases Equal Area Clusters (EAC) and Distinct Area Cluster (DAC).

Repeat the steps for each cluste

