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ABSTRACT
In this paper, we consider resource allocation optimization
problem in fourth generation long term evolution (4G-LTE)
with users running multiple applications. Each mobile user
can run both delay-tolerant and real-time applications. In
every user equipment (UE), each application has a application-
status differentiation from other applications depending on
its instantaneous usage percentage. In addition, the net-
work operators provide subscriber differentiation by assign-
ing each UE a subscription weight relative to its subscrip-
tion. The objective is to optimally allocate the resources
with a utility proportional fairness policy. We propose an
algorithm to allocate the resources in two-stages. In the
first-stage, the UEs collaborate with the evolved node B
(eNodeB) that allocates the optimal rates to users accord-
ing to that policy. In the second-stage, each user allocates its
assigned rate internally to its applications according to their
usage percentage. We prove that the two-stage resource allo-
cation algorithm allocates the optimal rates without eNodeB
knowledge of the UEs utilities. Finally, numerical results on
the performance of the proposed algorithm are presented.

Categories and Subject Descriptors
K.6.2 [Management of Computing and Information
Systems]: Installation Management—pricing and resource
allocation; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—wireless communication

Keywords
Two-Stage Resource Allocation; Multiple Utilities; Subscriber
Differentiation

1. INTRODUCTION
In recent years, there has been a rapid growth in mobile

broadband service. This rapid growth is in both the number
of subscribers and the traffic of each subscriber. The wireless
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network providers are moving from single service (e.g. Inter-
net access) to multiple service offering (e.g. multimedia tele-
phony and mobile-TV) [1]. Mobile subscribers are running
multiple applications on their smart phones, simultaneously.
These different applications and services have different per-
formance requirements, for example, some are delay-tolerant
and some are real-time applications. Therefore, they require
different bit-rates and packet delays. Due to the different na-
ture of different applications, service-offering differentiation
needs to be taken into consideration when allocating the re-
sources for different users. The usage percentage of each
application on the UE requires an additional differentiation
that we call application-status differentiation. In addition,
network providers are recently providing subscriber differen-
tiation [1], i.e. different users requesting the same service re-
ceive different treatment. Defined by the network providers,
subscriber differentiation could be between corporate and
private subscribers, post- and pre-paid subscribers, and/or
privileged and roaming subscribers.

In [2, 3], the authors present an optimal rate allocation
algorithm for users with delay-tolerant or real-time applica-
tions. The optimal rates are achieved by formulating the
rate allocation optimization problem in a convex optimiza-
tion framework. The authors use logarithmic and sigmoidal-
like utility functions to represent delay-tolerant and real-
time applications, respectively. In [2, 3], the rate allocation
algorithm gives priority to real-time applications over delay-
tolerant applications when allocating resources as the utility
proportional fairness rate allocation policy is used. This re-
source allocation guarantees service-offering differentiation
when allocating resources.

In this paper, we formulate the resource allocation op-
timization problem with service-offering differentiation, ap-
plication status differentiation and subscriber differentiation
that is casted in a convex optimization framework. In our
system model, each subscriber has a subscription weight
set by the network. In addition, each subscriber can run
multiple applications, each with its own utility function, on
his smart phone. The applications running on the phone
have different application-status depending on their instan-
taneous usage percentage and importance to the subscriber.
For example, the application running on the foreground,
such a voice call, has higher application-status than the ap-
plication running on the background, such as an automatic
application update. Finally, the service-offering differentia-
tion which gives priority to real-time applications over delay-



tolerant applications is inherited in the utility proportional
fairness rate allocation policy.

Our resource allocation algorithm is performed in two-
stages. The first-stage is for allocating the users rates and
this is performed collaboratively between the eNodeB and
the UEs. The second-stage is for allocating the applications
rates and this is performed internally in each UE.

1.1 Related Work
A non-convex optimization formulation for maximization

of utility functions in wireless networks is presented in [4,
5]. Both elastic and sigmoidal-like utility functions are used.
The authors present the algorithm to solve it optimally when
the duality gap is zero and include a fair allocation heuristic
to ensure network stability.

A utility max-min fairness resource allocation for users,
with elastic and real-time traffic, sharing a single path in
the network is proposed in [6]. In [7], the authors propose a
utility proportional fair optimization formulation for high-
SINR wireless networks using utility max-min architecture.
A comparison between their algorithm and the traditional
bandwidth proportional fair algorithms in [8] is presented
and a closed form solution that prevents oscillations in the
network is proposed.

A distributed power allocation algorithm for a mobile cel-
lular system is proposed in [9]. The authors used non-
concave sigmoidal-like utility functions. The algorithm pro-
vides an approximation to the global optimal solution and
therefore could drop some users to maximize the overall sys-
tem utilization. Therefore, it does not guarantee a minimum
QoS for all users.

A weighted aggregation of elastic and inelastic utility func-
tions for each UE is proposed in [10]. This aggregated utility
functions are then approximated to the nearest strictly con-
cave utility function from a set of functions using minimum
mean-square error. These approximated utility functions are
solved using a modified version of the distributed rate alloca-
tion algorithm by Frank Kelly [11]. Therefore, the allocated
rates are approximations of the optimal rates.

1.2 Our Contributions
Our contributions in this paper are summarized as:

• We present a novel two-stage method for allocating the
optimal rates for users running multiple applications.
In the first-stage, the eNodeB and the UEs collaborate
to allocate the optimal rate to each UE. In the second-
stage, each UE internally distributes its rate optimally
to the different applications running on it.

• We prove that the new two-stage resource allocation
optimization problem is equivalent to the one-stage re-
source allocation convex optimization problem that al-
locates rates directly to applications. We present the
algorithm for solving the two-stage optimization prob-
lem and its simulation results.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the problem formulation. Section 3 proves
that our novel two-stage allocated optimal rates are equiv-
alent to one-stage allocated optimal rates. In Section 4,
we present our two-stage rate allocation algorithm for the
utility proportional fairness policy. Section 5 discusses sim-
ulation setup and provides quantitative results along with
discussion. Section 6 concludes the paper.

2. PROBLEM FORMULATION
We consider single cell 4G-LTE mobile system consisting

of a single eNodeB and M UEs. The rate allocated by the
eNodeB to ith UE is given by ri. Each UE has its own utility
function Vi(ri) that corresponds to the applications running
of the UE. Our objective is to determine the optimal rates
the eNodeB shall allocate to the UEs. We assume the user
utility function Vi(ri) of i

th UE is given by:

Vi(ri) =

Ni
∏

j=1

U
αij

ij (rij) (1)

where Uij(rij) is the jth application utility function, rij is
the rate allocated to the jth application, and αij is the jth

application usage percentage on the ith UE (i.e.
∑Ni

j=1 αij =

1). We assume that Uij(rij) is a strictly concave or a sigmoidal-
like function. The utility functions U(r) have the following
properties:

• U(0) = 0 and U(r) is an increasing function of r.

• U(r) is twice continuously differentiable in r and bounded
above.

In our model, we use the normalized sigmoidal-like utility
function, as in [9], that can be expressed as

U(r) = c
( 1

1 + e−a(r−b)
− d

)

(2)

where c = 1+eab

eab and d = 1
1+eab . So, it satisfies U(0) = 0 and

U(∞) = 1. The inflection point of normalized sigmoidal-like
function is at rinf = b. In addition, we use the normalized
logarithmic utility function, as in [7], that can be expressed
as

U(r) =
log(1 + kr)

log(1 + krmax)
(3)

where rmax is the maximum required rate for the user to
achieve 100% utilization and k is the rate of increase of uti-
lization with the allocated rate r. So, it satisfies U(0) = 0
and U(rmax) = 1. The inflection point of normalized loga-
rithmic function is at rinf = 0.

The basic formulation of the resource allocation problem
is given by the following optimization problem:

max
r

M
∏

i=1

(

Ni
∏

j=1

U
αij

ij (rij)
)βi

subject to

M
∑

i=1

Ni
∑

j=1

rij ≤ R,

rij ≥ 0, i = 1, 2, ...,M,

j = 1, 2, ..., Ni.

(4)

where R is the maximum achievable rate of the eNodeB, M
is the number of UEs in the coverage ara of the eNodeB,
and Ni is the number of applications running in the ith UE.

Corollary 2.1. The optimization problem (4) is a con-
vex optimization problem and there exists a unique tractable
global optimal solution.

Proof. The objective function in optimization problem

(4) given by
∏M

i=1

(

∏Ni
j=1 U

αij

ij (rij)
)βi

is equivalent to the



objective function
∑M

i=1 βi

∑Ni
j=1 αij logUij(rij), so the op-

timization problem (4) can be written as follows:

max
r

M
∑

i=1

βi

Ni
∑

j=1

αij logUij(rij)

subject to

M
∑

i=1

Ni
∑

j=1

rij ≤ R,

rij ≥ 0, i = 1, 2, ...,M,

j = 1, 2, ..., Ni.

(5)

Given the problem formulation in Section 2, we know that
the utility functions Uij(rij) are strictly concave or sigmoidal-
like functions. From Lemma (III.1) in [2], logUij(rij) is a
strictly concave function for a strictly concave or sigmoidal-
like utility function Uij(rij). It follows that optimization
problem (5) is convex and as a result optimization problem
(4) is also convex. Therefore, there exists a tractable global
optimal solution for optimization problem (4).

3. TWO-STAGE OPTIMIZATION PROBLEM
We divide optimization problem (4) in two optimization

problems to be solved into two stages and allocate the same
optimal rates as optimization problem (4). In the first-stage,
the rates ri are allocated to the users by the eNodeB and the
solution is achieved collaboratively between the eNodeB and
the UEs. We call this stage the eNodeB-UE rate allocation
(EURA) stage. In the second-stage, the rates rij are allo-
cated to applications and the allocation is done internally in
the UE. We call this stage the internal UE rate allocation
(IURA) stage.

3.1 EURA Optimization Problem
EURA optimization problem that is solved collaboratively

between the eNodeB and the UEs and can be written as:

max
r

M
∏

i=1

V
βi
i (ri)

subject to
M
∑

i=1

ri ≤ R,

ri ≥ 0, i = 1, 2, ...,M.

(6)

where Vi =
∏Ni

j=1 U
αij

ij (rij) and r = {r1, r2, ..., rM} and M

is the number of UEs in the coverage area of the eNodeB.
In the optimization problem (6), since the objective function

argmax
r

∏M

i=1 V
βi
i (ri) is equivalent to argmax

r

∑M

i=1 βi log(Vi(ri)),

then optimization problem (6) can be written as:

max
r

M
∑

i=1

βi log(Vi(ri))

subject to
M
∑

i=1

ri ≤ R,

ri ≥ 0, i = 1, 2, ...,M.

(7)

Corollary 3.1. The optimization problem (6) is a con-
vex optimization problem and there exists a unique tractable
global optimal solution.

Proof. From equation (1), we have that log(Vi(ri)) =
∑Ni

j=1 αij log(Uij(rij)), and given the problem formulation

in Section 2, then optimization problem (6) is convex (steps
similar to Corollary 2.1)

3.2 IURA Optimization Problem
IURA optimization problem is solved internally in every

UE and can be written for the ith UE as follows:

max
ri

Ni
∏

j=1

U
αij

ij (rij)

subject to

Ni
∑

i=1

rij ≤ r
opt
i ,

rij ≥ 0, j = 1, 2, ..., Ni.

(8)

where ri = {ri1, ri2, ..., riNi
} and r

opt
i is the rate allocated by

eNodeB to the ith UE. In the optimization problem (8), since

the objective function argmax
ri

∏Ni
j=1 U

αij

ij (rij) is equivalent

to argmax
ri

∑Ni
j=1 αij log(Uij(rij)), then optimization prob-

lem (8) can be written as:

max
ri

Ni
∑

j=1

αij logUij(rij)

subject to

Ni
∑

i=1

rij ≤ r
opt
i ,

rij ≥ 0, j = 1, 2, ..., Ni.

(9)

Corollary 3.2. The optimization problem (8) is a con-
vex optimization problem and there exists a unique tractable
global optimal solution.

Proof. Given the problem formulation in Section 2, then
optimization problem (8) is convex (steps similar to Corol-
lary 2.1).

3.3 Equivalence
In this section, we show the equivalence of EURA opti-

mization problem (6) and IURA optimization problem (8)
to optimization problem (4).

Lemma 3.3. For strictly concave or sigmoidal-like utility
functions Uij(rij), the slope of natural logarithm of utility

functions p = Sij(rij) =
∂ logUij(rij)

rij
are invertible and the

inverse functions rij = S−1
ij (p) are strictly decreasing func-

tions.

Proof. For the strictly concave utility function Uij(rij)
case and from the utility function properties in Section 2,
the utility function is positive Uij(rij) > 0, increasing and
twice differentiable with respect to rij . Then, it follows that

U ′

ij(rij) =
∂Uij(rij)

∂rij
> 0 and U ′′

ij(rij) =
∂2Uij(rij)

∂r2
ij

< 0. It

follows that, we have Sij(rij) =
∂ log(Uij(rij))

∂rij
=

U′

ij(rij)

Uij(rij)
>

0 and
∂Sij(rij)

∂rij
=

U′′

ij(rij)Uij(rij)−U′2

ij (rij )

U2

ij
(rij)

< 0. Therefore,

Sij(rij) of any strictly concave utility function is strictly
decreasing function.



For the sigmoidal-like utility function Uij(rij) case, the
utility function of the normalized sigmoidal-like function is
given by equation (2). For 0 < rij < R, we have the first
and second derivative as

∂

∂rij
Sij(rij) =

aijdije
−aij(rij−bij )

1− dij(1 + e−aij(rij−bij))

+
aije

−aij(rij−bij)

(1 + e−aij(rij−bij))
> 0

∂2

∂r2ij
Sij(rij) =

−a2
ijdije

−aij(rij−bij)

cij

(

1− dij(1 + e−a(rij−bij))
)2

+
−a2

ije
−aij(rij−bij)

(1 + e−aij(rij−bij))2
< 0.

It follows that Sij(rij) of any sigmoidal-like utility function
is strictly decreasing function.

As a result, Sij(rij) of all the utility functions in Section
2 are strictly decreasing functions. Therefore, Sij(rij) func-
tions are invertible and rij = S−1

ij are strictly decreasing
functions.

Corollary 3.4. The ith user optimal rate ri allocated
by optimization problem (6) is equal to the ith user aggre-

gated applications rates
∑Ni

j=1 rij allocated by optimization

problem (4).

Proof. From optimization problem (5), we have the La-
grangian:

LT (rij) = (

M
∑

i=1

βi

Ni
∑

j=1

αij logUij(rij))−pT (

M
∑

i=1

Ni
∑

j=1

rij−R+z)

(10)
where z ≥ 0 is the slack variable and pT is the Lagrange mul-
tiplier which corresponds to the total price per bandwidth
for the M channels (i.e. shadow price [2]). So, we have

∂LT (rij)

∂rij
= βiαij

U ′

ij(rij)

Uij(rij)
− pT = 0 (11)

pT = βiαij

U ′

ij(rij)

Uij(rij)
= fij(rij) (12)

rij = f
−1
ij (pT ) (13)

ri =

Ni
∑

j=1

rij =

Ni
∑

j=1

f
−1
ij (pT ). (14)

From optimization problem (7), we have the Lagrangian:

LS(ri) = (

M
∑

i=1

βi log Vi(ri))− pS(

M
∑

i=1

ri −R + z) (15)

where z ≥ 0 is the slack variable. So, we have

∂LS(ri)

∂ri
= βi

V ′

i (ri)

Vi(ri)
− pS = 0 (16)

pS = βi
V ′

i (ri)

Vi(ri)
(17)

using log Vi(ri) =
∑Ni

j=1 αij logUij(rij) from equation (1)

and ri =
∑Ni

j=1 rij we have

∂ log Vi(ri)

∂rij
=

∂

∂rij

(

Ni
∑

j=1

αij logUij(rij)
)

∂ log Vi(ri)

∂ri

∂ri

∂rij
=αij

∂ logUij(rij)

∂rij

V ′

i (ri)

Vi(ri)
=αij

U ′

ij(rij)

Uij(rij)

(18)

substituting in (17) we have

pS = βiαij

U ′

ij(rij)

Uij(rij)
= pT = fij(rij) (19)

ri =

Ni
∑

j=1

rij =

Ni
∑

j=1

f
−1
ij (pT ) (20)

so the shadow prices pT and pS of optimization problem (4)
and (6) are equal and so are the rates of equation (14) and
(20).

Corollary 3.5. The jth application in ith user optimal
rate rij allocated by optimization problem (8) is equal to the
jth application in ith user optimal rate rij allocated by opti-
mization problem (4).

Proof. From optimization problem (9), we have the La-
grangian:

LI(rij) = (

Ni
∑

j=1

αij logUij(rij))− pI(

Ni
∑

j=1

rij − r
opt
i + z) (21)

where z ≥ 0 is the slack variable and pI is the Lagrange
multiplier which corresponds to the internal price per band-
width for the total ith user applications (i.e. internal shadow
price).

∂LI(rij)

∂rij
= αij

U ′

ij(rij)

Uij(rij)
− pI = 0 (22)

βipI = βiαij

U ′

ij(rij)

Uij(rij)
= fij(rij) (23)

using constraints of equation (9) then we have

r
opt
i =

Ni
∑

j=1

rij =

Ni
∑

j=1

f
−1
ij (βipI) (24)

from equation (20) then pT = βipI . From equation (12)
and (23), then optimal rates rij allocated by optimization
problem (8) are equal to optimal rates rij allocated by op-
timization problem (4).

Theorem 3.6. Optimization problems (6) and (8) are equiv-
alent to optimization problem (4).

Proof. It follows from Corollary 3.4 and 3.5 that opti-
mization problems (6) and (8) are equivalent to optimization
problem (4).

4. ALGORITHMS
The optimal rates are allocated in two-stages. In the

first-stage, EURA algorithm allocates the users rates ri. In
the second-stage, IURA algorithm allocates the applications
rates rij .



4.1 EURA Algorithm
In this section, we present the first-stage of resource al-

location where the rates ri are allocated to the UEs. The
algorithm is divided into a UE algorithm shown in Algorithm
(1) and a eNodeB algorithm shown in Algorithm (2). The
algorithm is a modification of the distributed algorithms in
[2].

Algorithm 1 UE Algorithm

Send initial bid wi(1) to eNodeB
loop

Receive shadow price pS(n) from eNodeB
if STOP from eNodeB then

Calculate allocated rate r
opt
i = wi(n)

pS(n)

else
Solve ri(n) = argmax

ri

(

βi log Vi(ri)− pS(n)ri
)

Send new bid wi(n) = pS(n)ri(n) to eNodeB
end if

end loop

In Algorithm (1) and (2), each UE starts with an initial
bid wi(1) which is transmitted to the eNodeB. The eNodeB
calculates the difference between the received bid wi(n) and
the previously received bid wi(n − 1) and exits if it is less
than a pre-specified threshold δ. We set wi(0) = 0. If the
value is greater than the threshold, eNodeB calculates the

shadow price pS(n) =
∑M

i=1
wi(n)

R
and sends that value to all

the UEs. Each UE receives the shadow price to solve the
rate ri that maximizes log βiVi(ri) − pS(n)ri. That rate is
used to calculate the new bid wi(n) = pS(n)ri(n). Each UE
sends the value of its new bid wi(n) to eNodeB. This process
is repeated until |wi(n)−wi(n−1)| is less than the threshold
δ.

Algorithm 2 eNodeB Algorithm

loop
Receive bids wi(n) from UEs {Let wi(0) = 0 ∀i}
if |wi(n)− wi(n− 1)| < δ ∀i then

STOP and allocate rates (i.e r
opt
i to user i)

else

Calculate pS(n) =
∑M

i=1
wi(n)

R

Send new shadow price pS(n) to all UEs
end if

end loop

4.2 IURA Algorithm
In this section, we present the second-stage of resource

allocation where the rates rij are allocated internally in the
UE to its applications. The algorithm is shown in Algorithm
(3). The UE uses the allocated rate in the first-stage r

opt
i

and solves the maximization problem that is given by ri =
argmax

ri

∑Ni
j=1(αij logUij(rij)− pIrij) + pIr

opt
i . Finally, the

UE allocates the rates rij to the corresponding applications.

5. SIMULATION RESULTS
Algorithm (1), (2) and (3) were applied to various loga-

rithmic and sigmoidal-like utility functions with different pa-
rameters in MATLAB. The simulation results showed con-
vergence to the optimal global point. In this section, we

Algorithm 3 Internal UE Algorithm

loop
Receive r

opt
i from eNodeB {by Algorithm (1) and (2)}

Solve
ri = argmax

ri

∑Ni
j=1(αij logUij(rij) − pIrij) + pIr

opt
i

{ri = {ri1, ri2, ..., riNi
}}

Allocate rij to the jth application
end loop
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Figure 1: The applications utility functions Uij(rij).

present the simulation results of six utility functions, simi-
lar to [2, 3], shown in Figure 1, corresponding to three UEs
with aggregated utilities shown in Figure 2. We use three
normalized sigmoidal-like functions that are expressed by
equation (2) with different parameters, a = 5, b = 10 which
is an approximation to a step function at rate r = 10 (e.g.
VoIP), a = 3, b = 20 which is an approximation of an adap-
tive real-time application with inflection point at rate r = 20
(e.g. standard definition video streaming), and a = 1, b = 30
also is an approximation of an adaptive real-time applica-
tion with inflection point at rate r = 30 (e.g. high definition
video streaming). These sigmoidal-like utility functions are
running in User (i.e UE) 1, 2, and 3, respectively. We use
three logarithmic functions that are expressed by equation
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Figure 2: The aggregated utility functions Vi(ri) cor-
responding to the ith user.
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Figure 3: The users rates convergence ri(n) with
number of iterations n for R = 100 (EURA algo-
rithm).

(3) with rmax = 100 and different ki parameters which are
approximation for delay tolerant applications (e.g. FTP).
We use k = {15, 3, 0.5}. These logarithmic utility func-
tions are running in User 1, 2, and 3, respectively. We set
βi = 1 ∀ i. Let α = {α11, α12, α21, α22, α31, α32} be the set
of application-status weights.

5.1 Convergence Dynamics for R =100
In the following simulations, we set R = 100, application-

status weights α = {0.1, 0.9, 0.5, 0.5, 0.9, 0.1}, and number
of iterations n = 40. In Figure 3, we show the allocated
rates ri of different users with the number of iterations n.
This is the solution of optimization problem (6) using EURA
algorithm. The user rates are used to solve optimization
problem (8) using IURA algorithm to achieve the optimal
applications rates. Figure 4, we show the allocated applica-
tion rates rij for each user with the number of iterations n.
This solution is equivalent to solving optimization problem
(4).

5.2 For 10 ≤ R ≤ 105

In the following simulations, we set δ = 10−3 and the
eNodeB total rate R takes values between 10 and 105 with
step of 5. In Figure 5, we show the final users rates ri
with different eNodeB total rate R. This is the solution of
optimization problem (6) using EURA algorithm. Figure
6, we show the final applications rates rij of different users
with different eNodeB total rate R. This is the solution of
optimization problem (8) using IURA algorithm.

5.3 Sensitivity to change in α

In the following simulations, we set δ = 10−3 and the
total achievable rate of the eNodeB R = 100. We mea-
sure the sensitivity of the change in the usage percentages
(corresponding to application-status differentiation) of the
application running in the UEs. The users switch between
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(c) The application rates r3j(n) of the 3rd user.

Figure 4: The applications rates convergence rij(n)
with number of iterations n for R = 100 (IURA al-
gorithm).

their applications with the following usage percentages

α(t) =



















{0.1, 0.9, 0.5, 0.5, 0.9, 0.1} ; 0 ≤ t ≤ 40
{0.5, 0.5, 0.3, 0.7, 0.2, 0.8} ; 40 < t ≤ 80
{0.1, 0.9, 0.9, 0.1, 0.9, 0.1} ; 80 < t ≤ 120
{1.0, 0.0, 0.9, 0.1, 0.8, 0.2} ; 120 < t ≤ 160
{0.5, 0.5, 0.9, 0.1, 0.8, 0.2} ; 160 < t ≤ 200.

(25)
In Figure 7, we show the users rates ri convergence with
time for the changing usage percentages given by α(t).

6. CONCLUSION
In this paper, we proposed a novel two-stage approach for

resource allocation in 4G-LTE. In the first-stage, eNodeB
collaborates with the UEs to allocate the rates to all the
UEs in its coverage area. In the second-stage, each UE in-
ternally allocates rates to its applications. We proved that
this resource allocation is optimal and that it is equivalent to
the direct allocation of rates to applications by eNodeB. Our
proposed algorithm takes into consideration service-offering
differentiation (real-time and delay-tolerant applications),
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Figure 5: The users rates ri are the solution to op-
timization problem (6) for different values of R.

application-status differentiation (usage percentage of ev-
ery application within a UE) and subscriber differentiation
(subscribers priority within a network). We showed through
simulations that our two-stage algorithm converges to the
optimal rates.
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