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Abstract—Active learning of register automata infers
extended finite state machines (EFSMs) with registers
for storing values from a possibly infinite domain, and
transition guards that compare data parameters to reg-
isters. In this paper, we present RALib, an extension to
the LearnLib framework for automata learning. RALib
provides an extensible implementation of active learning
of register automata, together with modules for output,
typed parameters, mixing different tests on data values,
and directly inferring models of Java classes. RALib also
provides heuristics for finding counterexamples as well as
a range of performance optimizations. Compared to other
tools for learning EFSMs, we show that RALib is superior
with respect to expressivity, features, and performance.

I. INTRODUCTION

Creating behavioral models of components can be
both time-consuming and difficult. To automate this
task, different approaches for generating models with
little or no human intervention have been devised. One
such approach is dynamic analysis (e.g., [11]), in which
information about a target component is collected from
its runtime behavior. This typically means executing
different commands on the component and observing
how it responds (by generating output, error messages,
etc.). The collected information is then compiled into a
formal model.

A particular form of dynamic analysis is automata
learning, where the generated models are finite state
machines (FSM) representing the control flow of a target
component. Automata learning has been used, e.g., to
support interface modeling [5], for test generation [19],
and for security analysis [18]. In classic automata learn-
ing, the generated models are deterministic finite au-
tomata (DFA). Perhaps the most well-known algorithm
for inferring DFA is L∗ [6], which has been implemented
in the LearnLib framework [17].

Recent efforts in automata learning (e.g., [8, 7, 3],
and our own previous work [14]) have focused on using
active learning to generate extended finite state machines

c l a s s KeyGenMap {
p r i v a t e Map map = new HashMap ( ) ;
K p u t (V v a l ) {

a s s e r t map . s i z e ( ) < MAX CAPACITY;
K key = gene ra t eUn iqueKey ( ) ;
map . p u t ( key , v a l ) ;
re turn key ;

}
V g e t (K key ) {

a s s e r t map . c o n t a i n s K e y ( key ) ;
re turn map . g e t ( key ) ;

}
}

Fig. 1: Source code for a map that generates keys.

(EFSMs). EFSMs can model the interplay between a
component’s control flow and data flow, since input
and output symbols can carry data values. A common
EFSM formalism is register automata, where a finite
control structure is combined with variables, guards,
and assignments. Register automata generalize DFA to
infinite alphabets, by allowing alphabet symbols with
data values from an infinite domain, e.g., of the form
α(d) where d represents a data value. They recognize
data languages, where sequences of alphabet symbols
are accepted or rejected depending on relations (typically
equality) between data values.

In our previous work [9], we presented SL∗, a sym-
bolic extension of the L∗ algorithm that generates regis-
ter automata. SL∗ is parameterized on a theory: a set of
operations and tests on the data domain, such as equality,
inequality (<) over integers, or simple arithmetic. It
infers register automata, but needs to be adapted in order
to be useful in more realistic scenarios.

Example 1.1: Consider the implementation of a map
that stores key-value pairs 〈k, v〉, as shown in Fig. 1. The
map has two methods: put and get. Invoking put(v)
ensures that the capacity of the map is not exhausted,
creates a new unique (hitherto unused ’fresh’) key k,



stores the pair 〈k, v〉, and returns the new key k. Invoking
get(k) checks that the map contains a pair 〈k, v〉 and
returns the value v of this pair. ut

To learn the map using SL∗, we need to present it as a
data language where sequences of symbols (i.e., method
calls and return values) can be accepted or rejected. We
must be able to model the ’fresh’ values in a way that
SL∗ can recognize. We might also want to ensure that
values of different types (such as the keys and values in
the map example) cannot be compared to each other.

In this paper, we present RALib, a new extension to
the LearnLib framework for automata learning [17]. It
contains a stable implementation of the SL∗ algorithm,
together with a number of practical additions that address
the above mentioned issues.
• Models with input and output. Many components

produce output as a direct result of input (e.g., the
map example). Register automata, however, do not
distinguish between input and output. RALib trans-
lates alternating input and output into sequences of
input symbols that can be accepted or rejected by a
register automaton and processed by SL∗. In the
other direction, RALib filters out sequences that
would not be feasible as component traces (e.g.,
that cannot be translated into alternating input and
output).

• ’Fresh’ data values. Register automata cannot in
principle handle fresh data values, since that would
require comparing a new data value to a possibly
unbounded number of previously seen data values.
We have added functionality for inferring freshness
for theories of equality.

• Typed parameters and mixing different theories.
When learning a data language, SL∗ compares all
parameters to each other. Sometimes this is inef-
ficient (if there are many available parameters) or
inaccurate. In a map, for example, invoking put(2)
might return the key 2, but 2 (as a key) and 2 (as a
value) should never be compared in this context.
RALib lets users define which parameters may
be compared to each other, by allowing different
theories and different data domains to be used in
the same model.

RALib can directly infer models of Java classes. It
contains heuristics for finding counterexamples (in au-
tomata learning terms, for making equivalence queries).
A range of performance optimizations are provided, e.g.,
for reducing the length of counterexamples.

We have evaluated RALib on a set of benchmarks,
ranging from data structures to models of the alternating-

TABLE I: Feature Matrix

LearnLibRA Tomte RALib
Input/Output yes yes yes
Fresh Data Values no yes yes
Data Types no no yes
Inequalities no no yes
Mixing of Theories no no yes

bit protocol and SIP. Compared to other tools for learning
EFSMs, we show that RALib is superior with respect to
expressivity, features, and performance.

Related Work. Several tools are available for active
automata learning from tests, using L∗ and similar
algorithms; we summarize some of them here.

LearnLib implements the L∗ algorithm as a basis.
It also has functionality for learning Mealy machines
and EFSMs with comparisons for equality (as described
in [13, 14]). We will refer to this implementation as
LearnLibRA in this paper.

Tomte[1, 3] builds on LearnLib’s L∗ implementation,
adding functionality for learning EFSMs with output. It
uses a mapper to infer equalities between data parame-
ters, and a lookahead oracle that stores future behavior
of the system. A recent paper [4] compared Tomte and
LearnLibRA using a set of benchmark models. Results
indicated that LearnLibRA outperformed Tomte partic-
ularly on the smaller models, but that Tomte required
fewer tests on the larger models.

Table I compares the features of RALib to
LearnLibRA and Tomte. All tools support components
with input and output; recently [2], Tomte has added
support for fresh data values. Currently, only RALib
supports theories beyond equalities, types, and mixing
different theories in the same model.

Targeting white-box scenarios (i.e., where the source
code is available and accessible), the Psyco [12] and
Sigma∗ [8] tools combine the L∗ algorithm with sym-
bolic execution. Psyco infers temporal component in-
terfaces, represented as labeled transition systems with
method guards, while Sigma∗ produces symbolic trans-
ducers with registers that store the k most recent data val-
ues. While these two approaches support different data
types and theories naturally through symbolic execution,
Psyco does not support registers at all and Sigma∗ works
only in scenarios where it is sufficient to access the k
most recent data values in a trace.

II. PRELIMINARIES

In this section, we summarize the necessary concepts
behind the SL∗ algorithm; we then describe the algo-



rithm itself. A more detailed discussion is found in [9].
SL∗ is parameterized by a theory, i.e., a pair 〈D,R〉

where D is an unbounded domain of data values, and R
is a set of relations on D. The relations in R can have
arbitrary arity. The RALib tool includes implementations
of two theories:
• equality over infinite domains such as session iden-

tifiers, or password/username strings, and
• inequality and equality over real/rational numbers.

The theories can also be extended with constants. In the
following, we assume that some theory has been fixed.

Data Languages. We assume a set Σ of actions, each
with an arity that determines how many parameters it
takes from the domain D. (We show actions with arity
1, but RALib handles actions with arbitrary arity.)

A data symbol is a term of form α(d), where α is
an action and d ∈ D is a data value. A data word
is a sequence of data symbols. The concatenation of
two data words w and w′ is denoted ww′. For a data
word w = α1(d1) . . . αn(dn), let Acts(w) denote its
sequence of actions α1 . . . αn, and V als(w) its sequence
of data values d1 . . . dn. Two data words w, w′ are
R-indistinguishable (denoted w ≈R w′) if they have the
same sequences of actions and cannot be distinguished
by the relations in R. A data language L is a set of data
words that respects R in the sense that w ≈R w′ implies
w ∈ L ↔ w′ ∈ L.

Register Automata. We assume a set of registers (or
variables), x1, x2, . . .. A parameterized symbol is a term
of form α(p), where α is an action and p a formal
parameter. A guard is a conjunction of relations (fromR)
over the formal parameter p and registers. An assignment
is a simple parallel update of registers with values from
registers or p.

Definition 2.1 (Register automaton): A register au-
tomaton is a tuple A = (L, l0,X ,Γ, λ), where
• L is a finite set of locations, where l0 ∈ L is initial,
• λ maps each location to {+,−},
• X maps each location l to a finite set X (l) of

registers (where X (l0) is the empty set), and
• Γ is a finite set of transitions, each of form
〈l, α(p), g, π, l′〉, where
– l, l′ ∈ L are source and target locations,
– α(p) is a parameterized symbol,
– g is a guard over p and X (l), and
– the assignment π updates registers in X (l′) with

values from p and registers in X (l). ut
We require register automata to be completely specified
in the sense that whenever there is an α-transition from

l0 l1

α(pI ,pS) | true
xI :=pI ; xS :=pS

α(pI ,pS) | xI=pI ∧ xS<pS

xS :=pS

Combination of session id (type I with test =) and sequence number
(type S with test <).

l0

l1

put(pV ) | true
xV :=pV

/key(pK) | fr(pK)
xK :=pK

get(pK) | true
−

/ e() | true
− get(pK) | xK 6=pK

−
/ e() | true

−
put(pV ) | true

−
/ e() | true

−
get(pK) | xK=pK

−
/ val(pV ) | xV =pV

−

Model of the map (Fig. 1) with capacity 1 that generates fresh keys.
Outputs marked by overscores; input and output separated by /.

Fig. 2: Small models demonstrating types, mixing theo-
ries, and input/output with fresh data values. Transitions
are labeled α(p) |g

π with parameterized symbol α(p),
guard g, and assignment π; superscripts denote types.
Only accepting locations are shown.

some location l ∈ L, then the disjunction of the guards
on all α-transitions from l is true.

Semantics of a register automaton. Let A =
(L, l0,X ,Γ, λ) be a register automaton. A state of A
is a pair 〈l, ν〉 where l ∈ L and ν is a valuation over
X (l), i.e., a mapping from registers to data values. The
initial state of A is 〈l0, ν0〉 where l0 is the initial location
and ν0 is the empty valuation.

A step of A transfers A from 〈l, ν〉 to 〈l′, ν ′〉 on
input of the data symbol α(d) if there is a transition
〈l, α(p), g, π, l′〉 ∈ Γ where d satisfies g[d/p] under the
valuation ν, and ν ′ is the updated valuation from π.

A run of A over a data word w = α(d1) . . . α(dn)
is a sequence of steps starting in 〈l0, ν0〉 and ending in
〈ln, νn〉. The run is accepting if λ(ln) = + and rejecting
if λ(ln) = −. The word w is accepted (rejected) by A
if A has an accepting (rejecting) run over w. We use
register automata as acceptors for data languages.

Learning from Tests. At a conceptual level, active
learning can be described as a series of interactions
between a Learner and a Teacher. The Teacher has
knowledge about a target language, and it is the Learner’s
goal to construct an automaton that recognizes it. The
Learner does this by making queries to the Teacher to
obtain information about the language.

In the L∗ algorithm, the target language is a regular
language over a finite alphabet. The Learner collects
information about the language by making membership



queries, each of which consists in asking the Teacher
whether a certain sequence of alphabet symbols is in the
target language or not. The Teacher’s answer is either
’yes’ or ’no’. In the SL∗ algorithm, the target language
is a data language, where membership is determined
by the relations between data values rather than the
actual values themselves. To discover these relations,
several membership queries can be aggregated into a tree
query. Common to both L∗ and SL∗ are equivalence
queries, which the Learner makes to determine whether
a constructed automaton is accurate or not. We explain
the two types of queries in SL∗ below.
Tree query. The Learner submits a data word (prefix) and
a sequence of actions with uninstantiated data parameters
(suffix) to the Teacher, who replies with a symbolic
decision tree. In a symbolic decision tree, data values
from the prefix are stored in registers, and compared
to data parameters in the suffix. The tree shows how
relations between data parameters in the prefix and suffix
determine which continuations of the prefix are in the
target language, and which ones are not. For example, as-
sume that the target language contains words of the form
α(d1)α(d2) where d1 = d2, and the Learner makes a tree
query for the prefix α(1) and suffix α(p). Fig. 3 shows
the symbolic decision tree returned by the Teacher. The
data value d1 is stored in a register x1, and words of
the form α(1)α(p) are accepted whenever p = x1 and
rejected otherwise. By relating data parameters from
the suffix to registers instead of concrete data values,
we can attach the same symbolic decision tree after
different prefixes. Prefixes can then be compared based
on whether their symbolic decision trees are equivalent
or not. This equivalence is the basis for identifying
locations in the hypothesis automaton.

+

−

α(1)
−−−−
x1 := 1

α(p) | p = x1

α(p) | p 6= x1

Fig. 3: Example of a symbolic decision tree for α(p)
after α(1).

Equivalence query. The Learner submits a register au-
tomaton to the Teacher and asks whether it correctly
models the target component. If it does, the Teacher
simply answers ’yes’. Otherwise, it supplies a coun-
terexample: a sequence that is valid but not accepted
by the automaton, or vice versa. In black-box scenarios,
equivalence queries can be approximated, e.g., by using
conformance testing or monitoring of the component in
order to find counterexamples.

Running the SL∗ algorithm. First, the Learner must
know what the alphabet, i.e., the set of actions, is.
Then, it makes a series of tree queries to collect fur-
ther information about the target language (i.e., whether
certain sequences of symbols are in the data language or
not). When certain consistency criteria have been met, a
hypothesis automaton is constructed and submitted to the
Teacher for an equivalence query. If the answer is ’yes’,
the algorithm terminates. Otherwise, a counterexample
is returned and handled by the algorithm. This involves
making new tree queries in order to construct a new
hypothesis automaton. The iterative process continues
until a correct model has been produced.

III. PRACTICAL ADDITIONS TO SL∗

In this section, we present the practical additions to
SL∗ that we have implemented in RALib. The additions
enable us to use register automata learning (e.g., SL∗)
in practice, e.g., for inferring models of data structures,
components with input and output, or Java classes.

Multiple Types and Theories. In RALib, each param-
eter that represents a data value is assigned a type,
and each type is associated with a particular theory.
This enables us to learn models of components where,
e.g., some of the parameters are compared for equality
while others are compared for inequality (<). Such a
component can be modeled as a register automaton for
a theory that is the union of all type-specific theories
and data domains. For a data language, multiple types
and theories correspond to the a priori knowledge that
certain data parameters are never related in the language.

Example 3.1: The upper sub-figure of Fig. 2 shows
the model of a small protocol component with input of
form α(dI , dS). Superscripts denote types: data values
of type I serve as session identifiers and data values of
type S are used as sequence numbers. Session identifiers
are only tested for equality, while sequence numbers are
tested for inequality (<). The protocol accepts sequences
of inputs with identical session identifiers and increasing
sequence numbers: On the transition from l0 to l1 vari-
ables of both types are stored without a test. Then, the
automaton can loop in l1 as long as inputs have session
identifiers that equal the stored one as well as increasing
sequence numbers. ut

In practice, multiple types and theories let us omit tests
between data parameters of different types, since any
relation between them cannot, by definition, be relevant.

Input and Output with Fresh Data Values. In practice,
we are usually confronted with components that consume



input and produce output. We focus on two categories
of data values in output: seen values and fresh values.
Seen values have already been part of previous input or
output; they can be, e.g., data values that are stored in
a data structure. Fresh values are not yet stored by a
component and have not yet occurred in input or output,
for example, a unique session identifier.

Models with input and output. We have inferred models
with seen data values in previous works, where we
introduced a particular class of register automata with
input and output (Register Mealy Machines), as well as
a learning algorithm for these automata [13]. In this
paper and in RALib we present an alternative, more
general approach to supporting models with data values
in output. We model input and output behavior of a
component as a restricted class of data languages (i.e.,
sets of sequences of input and output symbols). This
allows us to use the same results, models, and learning
algorithm as for (plain) register automata.

Let L be a data language over an alphabet Σ of actions
and a theory 〈D,R〉. Let Σ be partitioned into a set I
of input actions and a set O of output actions. We make
the natural assumptions that L is prefix-closed, and that
input and output alternate. In addition, we assume that
• L is input-enabled: if w is a word in L that ends

with an output symbol, then wi(d) is also in L for
any input symbol i(d).

• L is output-deterministic: let w be a word in L that
ends with an input symbol. If wo(d) and wo′(d′) are
both in L, then wo(d) ≈R wo′(d′) for any output
symbols o(d) and o′(d′).

When inferring a model for a component with input
and output, we let the learning algorithm infer a register
automaton over all input and output and filter out tests
that are not meaningful (i.e., violate one of the above
constraints). A similar method is described in [16].
We have evaluated our approach and confirmed that it
performs better than previous, more specialized (and
more complicated) implementations (cf. Section V).

Fresh data values. It is a well-known result that register
automata with tests for equality cannot decide freshness
of data values; an automaton would need an unbounded
number of registers to remember all seen data val-
ues [15]. RALib supports fresh data values for theories
of equality. In order to do this, we model freshness as
a new test fr on data values. We decide if a data value
is fresh by dynamically updating the definition of fr
while computing traces. This means that, technically, we
remember all data values in a trace, but without utilizing

the registers of the automaton. Our method works since
we only work with traces of finite length. We consider
data values in output to be either fresh or otherwise equal
to a preceding data value in a word, i.e., for a word
w = uo(d) ∈ L, either fr(d), or d is equal to some data
value in V als(u).

Example 3.2: In the lower part of Fig. 2 we show a
register automaton model of the map in Fig 1. We have
limited the map’s capacity to 1 to keep the model small,
but the principle remains the same for bigger capacities.
The register automaton consumes input get(pK) and
put(pV ), and produces output key(pK) and val(pV ), or
errors e().

The modeled map stores a value on the put-transition
from l0. It generates a key for the value, returns the key
as output, and also stores the key internally. The guard
fr(pK) in the key-label indicates that the key is fresh.
After storing, the value can be retrieved by providing
the correct key on the upper looping transition from l1.
Here, the xV = pV guard of the val-label specifies a
relation for the output (i.e., it defines that xV is returned
as the value of pV ). ut

IV. RALIB

RALib contains a reimplementation of the SL∗ al-
gorithm together with the additional features presented
in Section III. It is open source software and available
under the Apache 2.0 license. RALib is an extension to
LearnLib, and relies on many architectural patterns for
learning algorithms that this framework provides (e.g.,
organization through certain components and interfaces
between components).

RALib uses a constraint solver for two operations:
• to generate concrete data values for test cases from

symbolic constraints on these values, and
• to find differences between multiple symbolic deci-

sion trees (i.e., acceptance vs. rejection for certain
data values). These differences are computed when
processing counterexamples.

The input for the constraint solver is provided by the
learning algorithm, without requiring white-box access to
the system under learning. Currently, a custom algorithm
is used for the theory of equality; for more complex
theories, (e.g., with inequalities) RALib relies on Z3 [10]
for solving constraints.

Features. The core of RALib is a reimplementation of
SL∗ together with the practical additions described in
Section III. We also include some optimizations that aim
at reducing the number of tests executed while inferring



models: a component that pre-processes counterexam-
ples and tries to remove loops from them (similar to
the one presented in [4] for the Tomte tool), and a
component that simplifies symbolic suffixes computed
from counterexamples (discussed conceptually in [14]).
RALib provides a Java API, as well as two tools that
can be used from the shell: an IO simulator and a Java
class analyzer.

IO simulator. The IO simulator uses a register automaton
model as a SUL (system under learning). We used
this tool for most of the experiments in the evaluation
section. The IO simulator is intended to be used for
easy evaluation of different algorithms and features on
predefined benchmarks.

Class analyzer. The class analyzer can be used to infer
models of Java classes. It will use public methods of
a class as input symbols and wrap the return values or
any thrown exceptions as output. The class analyzer is a
very generic tool, since users can implement any specific
code needed for their scenario in a Java class and then
use the class analyzer on this class.

RALib also includes implementations for multiple
theories (testing equalities and inequalities with con-
stants and fresh data values). Moreover, it contains an
equivalence test for deterministic register automata, and
a random walk for finding counterexamples.

V. EVALUATION

In order to evaluate the features and optimizations
implemented in RALib, we have conducted three series
of experiments. This section describes our setup and
results. We focused on two particular aspects of RALib:
• Practicality: We verify that our implemented fea-

tures work as expected; we also infer models of
actual Java classes to demonstrate the application
of RALib in a realistic scenario. These experiments
used RALib’s IOSimulator and Java class analyzer.

• Performance: We compare the performance of
RALib when using different optimizations. These
experiments also let us compare the performance
of RALib to other tools. Many benchmarks used in
these experiments are taken from the raxml reposi-
tory to which we also contributed some benchmarks
(e.g., all examples that were augmented with types).

Experimental Setup. All experiments were set up in
a similar fashion: We ran each experiment 10 times
using a combination of the SL∗ learning algorithm with
a random walk for finding counterexamples. In each
round of searching for counterexamples, the random

TABLE II: Performance on Java collections.
Java class Data CE-opt. + Suffixes

java.util.PriorityQueue

Locs: 8 Trans’s: 24 Regs: 3
(avg. time: 44,162.8ms)

Learn
R 506.2 (160.53)

I 2, 721.1 (979.36)

Test
R 98.7 (48.49)

I 459.2 (221.15)

java.util.HashSet

Locs: 11 Trans’s: 42 Regs: 3
(avg. time: 1,647.8ms)

Learn
R 314.7 (51.89)

I 1, 487.0 (330.46)

Test
R 37.1 (26.92)

I 168.2 (129.39)

java.util.LinkedList
(offer, poll)

Locs: 4 Trans’s: 8 Regs: 3
(avg. time: 591.2ms)

Learn
R 41.3 (1.1)

I 140.9 (5.49)

Test
R 82.7 (70.41)

I 384.7 (330.22)

java.util.LinkedList
(push, pop)

Locs: 4 Trans’s: 8 Regs: 3
(avg. time: 587.9ms)

Learn
R 42.8 (3.34)

I 148.8 (17.67)

Test
R 149.8 (72.82)

I 691.5 (334.92)

java.util.HashMap

Locs: 7 Trans’s: 22 Regs: 4
(avg. time: 1,483.7ms)

Learn
R 133.6 (41.49)

I 487.3 (167.99)

Test
R 45.9 (42.8)

I 207.4 (199.06)

walk was started three times and the shortest resulting
counterexample was subsequently used. The random
walk is configured to stop after every step with a
probability of 10%, and to perform a maximum of 10,000
walks (tests) per experiment. This results in relatively
short counterexamples. Whenever a data value had to be
generated during a random walk, an unused data value
was chosen with a probability of 80%. This produces
counterexamples with many different data values, which
are easier (i.e., require fewer tests) to analyze than
counterexamples with many identical data values. We
refer to the above approach as our baseline setup.

We analyze the performance of our approaches in the
standard manner for automata learning algorithms, i.e.,
in terms of the number of tests needed for generating
models (in membership queries or tree queries) and
for finding counterexamples (equivalence queries). We
do not count tests that were spent searching for a
counterexample to the final (correct) model since by
definition there cannot be such a counterexample. The
numbers we report are averages and standard deviations
computed over the 10 runs for each experiment. We
checked the correctness of all inferred models manually,
since it may happen that the random walk does not find
all counterexamples. This is, however, not particular to
this concrete setup but a general characteristic of learning
models in a black-box scenario.



TABLE III: Performance of different optimizations on raxml-benchmarks.
Setup

Benchmark Data Baseline CE-opt. Suffixes CE-opt. + Suffixes Typed

ABP
OUTPUT

Locs: 7 Trans’s: 27 Regs: 1
(avg. time: 1,321.0ms)

L/T/R: cf. Baseline
(avg. time: 1,309.6ms)

L/T/R: cf. Baseline
(avg. time: 1,428.0ms)

L/T/R: cf. Baseline
(avg. time: 1,371.3ms)

L/T/R: cf. Baseline
(avg. time: 1,181.0ms)

Learn
R 447.9 (96.25) 493.6 (48.08) 354.0 (59.2) 464.2 (69.8) 303.3 (31.56)

I 2, 128.3 (517.52) 2, 102.7 (248.09) 1, 659.0 (322.43) 1, 945.8 (329.35) 1, 184.9 (157.66)

Test
R 1, 792.1 (1, 040.98) 1, 343.5 (796.64) 1, 526.7 (727.25) 1, 650.1 (1, 476.61) 394.4 (255.73)

I 17, 855.3 (10, 423.2) 13, 155.7 (7, 632.17) 15, 026.1 (7, 325.68) 16, 534.8 (15, 214.6) 3, 805.7 (2, 468.85)

ABP
RECEIVER

Locs: 4 Trans’s: 10 Regs: 1
(avg. time: 128,852.0ms)

L/T/R: cf. Baseline
(avg. time: 892.9ms)

L/T/R: cf. Baseline
(avg. time: 1,655.8ms)

L/T/R: cf. Baseline
(avg. time: 916.2ms)

L/T/R: cf. Baseline
(avg. time: 722.9ms)

Learn
R 82, 794.2 (155, 060.8) 613.0 (118.52) 759.9 (776.16) 404.5 (35.34) 193.2 (17.22)

I 556, 911.0 (1, 067, 018.43) 2, 316.9 (478.37) 4, 344.4 (5, 665.51) 1, 523.1 (225.56) 690.5 (110.17)

Test
R 173.0 (60.73) 182.4 (52.69) 285.1 (127.26) 214.8 (61.94) 64.8 (38.74)

I 1, 660.5 (566.77) 1, 687.2 (540.8) 2, 718.5 (1, 233.74) 1, 949.3 (626.28) 560.5 (369.61)

CHANNEL
FRAME

Locs: 2 Trans’s: 6 Regs: 2
(avg. time: 246.5ms)

L/T/R: cf. Baseline
(avg. time: 281.4ms)

L/T/R: cf. Baseline
(avg. time: 289.3ms)

L/T/R: cf. Baseline
(avg. time: 240.3ms)

L/T/R: cf. Baseline
(avg. time: 206.6ms)

Learn
R 11.9 (2.7) 19.4 (0.66) 12.0 (3.0) 19.6 (0.49) 19.4 (0.66)

I 23.8 (5.4) 32.8 (1.33) 25.0 (9.0) 33.2 (0.98) 32.8 (1.33)

Test
R 4.7 (1.68) 5.6 (2.97) 5.9 (2.02) 4.9 (1.7) 6.1 (3.01)

I 20.5 (8.66) 27.7 (14.09) 29.3 (12.64) 26.2 (9.38) 28.7 (12.71)

LOGIN

Locs: 3 Trans’s: 11 Regs: 2
(avg. time: 53,196.9ms)

L/T/R: cf. Baseline
(avg. time: 1,053.2ms)

L/T/R: cf. Baseline
(avg. time: 666.0ms)

L/T/R: cf. Baseline
(avg. time: 661.3ms)

L/T/R: cf. Baseline
(avg. time: 525.9ms)

Learn
R 867, 343.6 (1, 652, 145.58) 4, 356.9 (2, 472.54) 464.0 (545.52) 369.7 (76.63) 195.2 (27.97)

I 6, 419, 660.3 (12, 327, 042.53) 20, 375.9 (12, 045.22) 2, 370.8 (3, 783.02) 1, 458.3 (679.17) 691.4 (153.13)

Test
R 10.7 (6.87) 460.0 (673.11) 1, 059.1 (933.46) 776.4 (374.27) 232.4 (96.25)

I 71.9 (37.72) 4, 418.0 (6, 570.94) 10, 680.1 (9, 532.08) 7, 721.0 (3, 733.53) 2, 287.8 (966.39)

SIP

Locs: 9 Trans’s: 43 Regs: 2
(avg. time: 8,508.2ms)

L/T/R: cf. Baseline
(avg. time: 6,929.1ms)

L/T/R: cf. Baseline
(avg. time: 6,414.1ms)

L/T/R: cf. Baseline
(avg. time: 6,712.5ms)

-

Learn
R 1, 249.5 (972.83) 817.2 (235.43) 321.4 (25.74) 521.6 (39.88) -
I 7, 948.0 (8, 170.47) 3, 850.4 (1, 554.18) 1, 455.3 (164.67) 2, 130.5 (213.1) -

Test
R 2, 149.6 (1, 216.28) 3, 066.8 (1, 810.53) 2, 564.2 (1, 483.69) 2, 765.6 (1, 098.05) -
I 21, 278.7 (12, 132.97) 30, 132.8 (17, 833.35) 25, 422.1 (14, 589.43) 27, 335.6 (10, 725.4) -

Results. For all reported experiments, learning termi-
nated with the correct model in each of the 10 runs.
Tables II and III show the results of our experiments.
Rows are labeled with Java classes and benchmarks,
respectively. Each row contains three sub-rows. The top
sub-row reports the number of locations, transitions,
and registers in the final model, as well as the average
runtime in milliseconds. The middle and bottom sub-
rows, labeled Learn and Test, report the average number
[R] of test cases (resets) and inputs [I] used by the
learning algorithm and the random walk, respectively.
Standard deviation is shown in parentheses for all entries.
Columns are labeled with the different setups:
• Baseline. This is the baseline setup as described

above, i.e., without any optimizations enabled.
• CE-opt. In this setup, we use a heuristic that re-

moves loops from counterexamples, similar to the
one used by the Tomte tool in [4].

• Suffixes. We use an optimization that reduces the
number of data values accessible to the learning
algorithm in suffixes. This optimization is described
in [14] but was never evaluated since it was not
implemented except in the very first prototype.

• CE-opt. + Suffixes, combined. For the Java classes,
this was the only setup we used.

• Typed. We use both CE-opt. and Suffixes, as well as
different types for data parameters (except for SIP
which only had parameters of one type).

Practicality. We used RALib’s IO simulator tool to infer
a model of the small protocol component in the upper
part of Fig. 2. The model combines two theories for
equalities and inequalities for two types. We also learned
an extended version (i.e., with capacity 2) of the map in
the lower part of Fig. 2.

We used RALib’s class analyzer tool to infer models
of some Java data structures from the java.util
package. Table II shows the results. The capacity of all
data structures was artificially limited to 3 by placing the
implementations in a test-wrapper object. The priority
queue model uses equality and inequality (<) between
data parameters; all other models use only equality.

Comparing the numbers in the table to the ones
reported for inferring models of similar data structures
in [4], RALib is in the same range of numbers of tests as
other tools, while supporting more and multiple theories
and fresh data values in the output.
Performance. We conducted a series of experiments
using RALib’s IO simulator tool on a series of XML
model benchmarks, to analyze the impact of different
performance optimizations. Table III shows the results.

Different trends can be observed in the reported
data: Generally, the number of tests during learning
decreases from left to right in the table, showing that
the optimizations are effective. Except for the very small
CHANNEL FRAME benchmark, we were able to reduce
the number of tests by at least 30%, and in some cases



by more than 99%. Perhaps the most striking of these
cases is the LOGIN example, which has two actions with
two formal parameters each. It shows impressively how
effective and important the tested optimizations are for
components with multiple data parameters in inputs.

The number of tests needed for finding counterex-
amples does not show an equally consistent pattern.
Sometimes using fewer tests during learning results in
more tests during searching counterexamples. This is
expected: with fewer tests spent on learning, intermediate
models may be less accurate.

Comparing the different optimizations reveals that
optimizing counterexamples, suffixes, or both typically
improve the performance significantly with no consis-
tent pattern for which setup is most effective. Adding
types increases the performance on top of the other
optimizations by reducing the number of tests during
learning by another 50% in most cases. The standard
deviation decreases consistently as well, indicating that
performance becomes more predictable when using more
optimizations. By comparing the above results to those
in [4], we note that RALib outperforms Tomte and
LearnLibRA in terms of the number of tests needed
during learning.

VI. CONCLUSION

We have presented RALib, an extension to the Learn-
Lib framework for automata learning. RALib contains a
stable implementation of the SL∗ algorithm, along with
additional features and optimizations aimed at increasing
performance and at making SL∗ more useful in realistic
scenarios. Also included are tools for directly inferring
Java classes, as well as models with input and output.

We have evaluated RALib focusing on its performance
and real-world usability. RALib’s performance is com-
petitive: on a set of XML model benchmarks, it uses
fewer tests than the Tomte tool and prior implementa-
tions of register automata learning in LearnLib. The re-
sults from using the Java class analyzer and IO-simulator
indicate RALib’s usefulness in realistic scenarios.
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